CYTOMORPHOLOGICAL STUDIES ON SOMATIC EMBRYOGENESIS OF GENTIANA TIBETICA (KING) AND G. CRUCIATA (L.)

ANNA MIKUŁA1, MARIA WESOŁOWSKA2, JÓZEF KAPUSTA3, LUTOSŁAWA SKRZYPCZAK2, JAN J. RYBCZYŃSKI1

1The Botanical Garden, Polish Academy of Sciences, Prawdziwka 2, 02-973 Warsaw, Poland
2Chair and Department of Pharmaceutical Botany, K. Marcinkowski University of Medical Sciences in Poznań, Wieniawskiego 1, 61-712 Poznań, Poland
3Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowski 12/14, 61-704 Poznań, Poland

ABSTRACT

The process of plant regeneration via somatic embryogenesis of two gentianas, Gentiana tibetica and G. cruciata was described. For this purpose seedling explants were cultured on agar medium and later maintained in cell suspension. For callus initiation seedling explants like: cotyledons, hypocotyl and root were plated on a callus induction medium (CIM) composed of MS (1962), supplemented with 0.5 mg/l 2,4-D and 1.0 mg/l Kin. For the formation of cell suspension culture, embryogenic callus was transferred into liquid maintained medium (MM) composed of MS (1962), supplemented with 1.0 mg/l BAP + 0.1 mg/l NAA + 2.0 mg/l IBA + 80.0 mg/l SA. The conversion of somatic embryo into plantlets required a new medium (ECM) based on MS (1962) mineral salts, supplemented with 0.5 mg/l GA3 + 1.0 mg/l Kin + 0.5 mg/l NAA. For cytomorphological studies of particular stages of embryogenesis, specimens were stained with dyes and reagents: 1. PAS reaction with leukofucsin, 2. Safranin + fast green, 3. Erlich’s hematoxylin.

KEY WORDS: Gentiana cruciata, G. tibetica, somatic embryogenesis, cytomorphology, media, agar and suspension cultures.

INTRODUCTION

Species of Gentiana taxa are an object of interest because of their pharmaceutical value, i.e. production of biologically active substances. The most important are the secoiridoid glucosides (Skrzypczak et al. 1993). Among numerous gentiana species G. tibetica is of great significance. Recent progress in cell and tissue culture of gentianas (Skrzypczak-Pietraszek et al. 1993, Wesołowska et al. 1985, Mikula and Rybczyński 1994, Lamproye et al. 1987, Sharma et al. 1993, Semeniuk and Griesbach 1987, Wesołowska et al. 1994, Bach et al. 1994) allows the use of biotechnological methods to utilize their naturally existing potentials.

Considering utilization of somatic hybridization in Gentiana genus and modern protection of endangered plant species to which Polish gentianas are included it was necessary to develop a long term and effective regeneration system initiated from a single cell or an embryogenic cell cluster.

Somatic embryogenesis as the way of plant regeneration allows to obtain a fully formed embryo originated from the somatic cell of any seedling or plant explant. Originated from this side embryos pass the same stages of that development like the zygotic one. The prerequisite of it is to develop particular culture conditions to ensure correct embryogenesis. In our cultures the mature embryo was characterized by numerous morphological disturbances, which usually occurred in agar medium cultures. It was observed that trumpet and monocotyledony embryos most often developed in plantlets. In the case of disturbances consisting in the formation of a cauliflower – like and easily type of embryo no plant regeneration was observed (Goebel-Tournat et al. 1993). Using cytomorphological studies, we would like to learn more about the background of the observed disturbances which should help us to improve culture conditions to ensure a proper embryogenesis of the studied gentianas.

The aim of this paper is to show the cytomorphological changes of somatic embryogenesis, because of numerous disturbances observed in fully regenerated mature somatic embryo of the studied gentianas.
Figs 1-6. Fig. 1. Section through 2 month-old embryogenic callus of *G. cruciata* used for cell suspension initiation. Notice: various types of cells with the tendency to form embryogenic cell centers (E). There are cells with thick cell wall (→) and numerous starch grains (→) inside. Fig. 2. Single cell originated 8-cell praembryo in cell suspension culture of *G. tibetica* (non-stained). Fig. 3. Numerous somatic globular embryos with epidermis derived from cell suspension of *G. tibetica* (non-stained). Fig. 4. Correctly formed globular somatic embryo of *G. cruciata* with distinct suspensor (S) and praepidermis (E) surrounded by the praembryogenic mass (PEM) (Erlich's hematoxylin). Fig. 5. Globular (G) and beginning of heart stage embryo (H) on embryogenic callus (EC) of *G. cruciata*. Notice starch grains (→) in embryo cells and deeply located suspensor (S) in callus with the lack of handle of vessels junction (PAS + leuc豆腐cin). Fig. 6. Typical heart stage embryo of *G. cruciata* observed in cell suspension culture (safranin + fast green).
MATERIAL AND METHODS

Plant Material

Seeds germination and seedlings culture of Gentiana tibetica (King) and G. cruciata (L.) follow the earlier described methods (Wesołowska et al. 1985). The seedling explants like: cotyledons, hypocotyls and roots originated from 42 day-old seedling were planted on CIM for callus induction. After 5 months of culture the callus tissue was transferred into liquid MM. For somatic embryogenesis completion the medium was changed to EgCM. The next stages of the culture required the following media: ECM and RMM.

Media used:

Consecutive stages of gentiana cultures required the use of Murashige and Skoog’s medium (1964) supplemented with various plant growth hormones:

Callus Induction Medium (CIM) –

MS (1964) + 0.5 mg/l 2,4-D + 1.0 mg/l Kin (Skrzypczak et al. 1985).

Maintaining Medium (MM) –

MS (1964) + 1.0 mg/l Dic + 0.1 mg/l NAA + 2.0 mg/l BAP + 80.0 mg/l SA.

Embryogenesis Completing Medium (EgCM) –

MS (1964) + 0.24 mg/l GA3 + 0.24 mg/l Kin + 100 mg/l SA + 500 mg/l casein hydrolyzate.

Embryo Conversion Medium (ECM) –

MS (1964) + 0.5 mg/l GA3 + 1.0 mg/l Kin + 0.5 mg/l NAA.

Regenerant Maintaining Medium (RMM) –

half concentration of MS (1964) salt with all vitamins.

Cytomorphological examination

Cytological studies were carried out using three various types of staining. Culture derived samples of callus tissue (originated from agar medium culture), proembryogenic mass and somatic embryos in various stages of development (originated from cell suspension culture) were fixed in formaldehyde: acetic acid: 70% alcohol, 1:1:3 (FAA) solution for 24 h and then stored in 70% ethanol. After dehydration and wax embedding, 5-10 μm specimens were cut. For starch localization the PAS reaction with leucocufisin was employed. The next two stainings: safranin + fast green and Erlich’s hematoxylin helped to describe embryogenic and non-embryogenic character of cultures. Additionally, some analyses were based on Nomarsky’s contrast and non-stained squash in vivo specimens. The analyses were made on a light microscope NA-VOX with UV system of Olympus. Colour pictures were taken using Fuji Color Films 100.

RESULTS AND DISCUSSION

After five weeks of culture on CIM medium explants responded by formation of a callus dedifferentiation usually of the surface on the cotyledon of zygotic embryos. In the case of the others whole isolated organs dedifferentiated callus tissue. Due to culture conditions two types of callus tissue with varying morphogenic potential were obtained. Although differences in response of the studied explants and species were noted, one of the obtained calli was of embryogenic character (Mikula and Rybczyński 1994). Using two systems of culture of the embryogenic tissue, i.e. agar and liquid medium, it was possible to observe the development of consecutive stages of somatic embryos and their conversion in to plamites.

The transfer of embryogenic callus originated from the callus induction medium (CIM) (Fig. 1) to the liquid medium initiated cell suspension culture. The most important prerequisite of development of its embryogenic character is to acquire a cell meristematic activity in new aquatic conditions of the maintaining medium (MM). Later on the formation of somatic embryos through proembryogenic mass (PEM) (Fig. 3) or directly from single totipotent cells (Fig. 2), which undergo differentiation, initiate meristematic activity (Williams and Maheshwaran 1986). The totipotent cells are usually smaller than the other ones and have a large nucleus with nucleolus and dense cytoplasm. In our studies the use of Erlich’s hematoxylin staining allows to show groups of cells, which stronger absorbed dyes then others and carried an embryogenic character (Fig. 4). The cytoplasm of these cells has numerous starch grains, proved by the staining of PAS reaction and leucocufuscin (Fig. 5). Here, distinct meristematic centres could be observed, too. They included a group of some or a several surrounded by the thin cell wall, separated from other cells by thick and strongly stained wall (Botti and Vasil 1984). As the result of subsequent cell divisions somatic proembryos were formed (Halperin 1966). In the beginning, the proembryos consisted of non-differentiated cells carrying meristematic character cells. Gradually, as epidermis was formed, external cells tightly adhered to each other and elongate. The globular stage of embryo is characterized by well developed epidermis and well shaped bipolarity of the axis. In the basal part the suspensor cells help globular embryo to be in touch with the mother tissue (Fig. 4). Intensive cell divisions resulted in overgrowth of the embryo, in its plumular part (hard stage) (Fig. 6), and its next differentiation. The gradual differentiation of proembryum and proparenchyma cells appeared. Figure 5 presents characteristically elongated cells, closely adhering to each other, which have been formed from radicular towards plumular pole, without starch, forming proembryum. They are surrounded by cells presenting typical arrangement of parenchyma cells which show irregular shape, common size and numerous storage substances.

The transfer of not completely formed embryos (Fig. 7) from darkness to light conditions showed their early functional division into three naturally existing parts, i.e. cotyledons, hypocotyl and root, if the presence of organells in their epidermal cells was taken into consideration. In cotyledon epidermal cells possessing chloroplasts which lose the green colour towards root, where only leucoplasts were recognized, finally lacking of plastids in the suspensor cells.

Further development required the change of the medium to EgCM, which was supplemented with GA3. In such conditions embryos reached maturity. Figure 8 gives examples of the embryo. Although normally shaped embryos with well formed cotyledons were predominantly found, numerous developmental disturbances were recognized in our cultures. It seems that the medium used only partly satisfies hormonal requirements of correct embryogenesis.

Most often trumpet embryos could be found in cultures of both the studied Gentiana species. This type of disturbances and the one like fused embryo (Fig. 9) have been very often described in other somatic embryogenesis systems (Amirato 1987, Goebel-Tourand et al. 1993). Looking closely to this problem, in our cultures the hypocotyl elongation and limited formation, and differentiation of the cotyledons were recognized particularly in the case of embryo originated from cell suspension. Additionally the influence of darkness in which the suspension cultures were carried on is not insignificant.
Figs 7-9. Fig. 7. Somatic embryo of *G. tibetica* and their parts after light exposition (nonstained). Embryos derived from cell suspension culture carried in the dark. These parts are easily recognized according to number of type and number of plastids present in epidermal cells. A. general view, B. cotyledon – like part with dense chloroplasts, C. hypocotyl – like part with rare chloroplasts, D. radicular – like part with leucoplasts, E. suspensor – like part.

Fig. 8. Most often selected embryos originated from agar medium cultures.

Fig. 9. Fused embryo selected from *G. tibetica* culture with emerging first leaf. C - cotyledon, L - leaf, R - root.
As in the case of the mentioned above embryo disturbances, the disorder of embryogenesis occurred after reaching the heart stage by the embryo. The fused forms of embryos originated most probably from very early stages of embryogenesis or even from praembryogenic mass. Twin embryos recognized in microspor cultures of wheat could confirm the single cell origin (Rybczyński et al. 1991). If the observed disturbances are not connected with the plumul and do not damage the apical meristem and leaf primordia differentiation, the embryo conversion to plantlets can happen on ECM (embryo conversion medium). However, the time required for conversion was longer than in regularly formed embryos. The transfer and later culture of regenerants on RMM helped to compensate the observed developmental differences, which were the results of earlier described morphological disturbances. The morphological disturbances of further development of embryos can contribute to somaclonal variation which is a undesirable feature while material is cloned for preservation of endangered plant species.

The presented system of Gentiana tibetica and G. cruciata plant regeneration via somatic embryogenesis in cell suspension culture, even though it includes a few steps of culture, did not prevent numerous morphological disturbances. The figures showed here prove that the process of somatic embryogenesis happen correctly up to heart stage and, maybe even, to torpedo stage. However, the number of converted embryos to plantlets is relatively low, considering the huge number of obtained somatic embryos in this regeneration system. We are convinced that this analysis will help us to modify the whole culture system, which should finally give a high percentage of proper somatic embryos.

ACKNOWLEDGEMENTS

The authors would like thank Mrs Maria Piekarinski for her technical assistance.

LITERATURE CITED


CYTOMORFOLOGICZNE BADANIA NAD SOMATYCZNA EMBRIOGENEZA

GENTIANA TIBETICA (KING) I G. CRUCIATA (L.)

STRESZCZENIE

W pracy opisano proces powstawania roślin Gentiana cruciata L. i G. tibetica King drogą somatycznej embiogenezy. W kulturze agarowej stwierdzono występowanie w tkance kalusowej centrów komórek totipotentnych, z których następnie powstawały zarodki. W pozysce płynne zaobserwowano dwie drogi różnicywania się zarodków: z PEM-u (dasy praembryogenicznej) i z pojedynczych komórek. Różnicywaniu się i kulejne stadia zarodków somatycznych przedstawiono w oparciu o preparaty parafinowe barwione różnymi metodami: reakcja PAS i leukofuksyna, safranina i zieleń trwała, hematoksylina Erlica.

SŁOWA KLUCZOWE: Gentiana, kultury zawiesinowe, preparaty cytologiczne, somatyczna embiogeneza.