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Abstract

In symplasticly growing organs the principal directions of growth, which are indicated
by the eigenvectors of the symmetric part of the growth tensor, can be associated with each
positional point and joined up to form a network of orthogonal trajectories, unless the
growth is isotropic. The trajectories represent a natural coordinate system suitable for
description of growing organs. These trajectories often can be recognized in patterns of
nonrandom alignments in the cell wall network: these alignments are normal to anticlinal
and periclinal walls. Coordinate systems that fit the trajectories in different types of growing
organ are listed.
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INTRODUCTION

It has been shown that growth of plant organs is a tensorial attribute if that
growth is symplastic (Hejnowicz and Romberger 1984). The growth tensor,
t4, is the covariant derivative of the field ¥, where the vector V' is the displacement
velocity of a material point in the cell wall network. The tensor allows one to cha-
racterize the growing organ in terms of growth rates (linear, areal, and volumetric),
rate of angular change between cell walls, vorticity, and the principal directions
of growth. The latter are the directions in which the linear relative elemental rate
of growth, RERG,, attains extremal values (either maximal or minimal) around
a considered point. For each position in the organ there are three such mutually
orthogonal directions, unless the growth is isotropic. These directions are defined
by the eigenvectors of the symmetric part of the growth tensor, T}, represented
by physical components (physical components are symbolized by capital letters
in this paper). Line elements oriented along principal directions, and having a co-
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inciding initial point, preserve their orthogonality during growth, i.e., the angles
between them are not deformed during growth. In the case of line elements initially
orthogonal but not aligned along the principal directions the right angles are de-
formed. '

In a symplasticly and nonuniformly growing organ, we can associate principal
directions with each point within the organ. We can then regard the principal di-
rections as forming a network of orthogonal trajectories, the trajectories thus form
anatural coordinate system. The symmetric part of the growth tensor, 7,,, represented
in such a system is in the diagonalized form. The components (on the main diagonal)
give the principal growth rates or principal RERG,. The skew-symmetric part of the
growth tensor, 7,,=—T,,, where p#gq, describes vorticities of the crajectories.

HOW TO RECOGNIZE THE PRINCIPAL DIRECTIONS OF GROWTH

As mentioned, the line elements oriented in the principal directions and in-
cluding coinciding points preserve their orthogonality during growth. Inversely,
if there exist orthogonal elements that preserve orthogonality during growth in
an organ, and which increase in length (assuring that there is growth at their loca-
tions), then they are oriented in the principal directions.

It is known that wherever cells within plant organ are physically arranged with
nearly complete surface contact, there is a pattern of hexagons (on the average)
in section or in surface view (Dormer 1980). On it another pattern in the form
of series of periclinal and anticlinal walls, or wall trajectories, can be superposed
(Fig. 1). These wall trajectories are then mutually orthogonal and preserve their
orthogonality during growth. This means that they coincide with the trajectories
of the principal directions of growth.

Fig. 1. Classical scheme of anticlinal and periclinal wall trajectories in a root tip

already used by J. Sachs more than hundred years ago. The series of the periclinal

walls form a zigzag in longisection. This zigzag is continuously rebuilt during
growth, however it remains orthogonal to the anticlinal walls
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It should be noted that the cell wall network can indicdte the principal directions
if the following conditions are fulfilled: A). That the principal directions exist not
only in mathematical sense but are physically unambiguous. B) Newly formed
partitions are normal to the principal directions. C) The pattern of principal direc-
tion trajectories is steady or is changing only slowly in comparison with the maximal
RERG,.

Condition A demands, firstly, that growth be nonuniform i.e. that RERG, is
not the same in all directions at the considered point when that point is at various
positions in the organ. If growth is uniform, the growth tensor has the same com-
ponents on the main diagonal and zeros elsewhere, i.e. T,,=ad,,, where a repre-
sents RERG, of the isotropic growth and é,, is the Kronecker‘s symbol. In such
case the growth causes only an increase of the scale factor for the organ. However,
nonuniform growth is not a sufficient to fulfill the consition A, because if the differ-
ence between the growth rates in the several principal directions is small in compari-
son to the mean value of these rates, the physical situation is similar that of isotropic
growth. The dependence of RERG, on direction must be great enough to distinquish
the principal directions in an unambiquous physically manner. To provide a nu-
merical measure of growth anisotropy, Erickson (1976) proposed an anisotropy
ratio as the ratio of maximal RERG, to the minimal RERG, at a point. In the plane
of a pair of principal directions of growth this is the ratio of the corresponding
principal growth rates. Condition A demands that anisotropy ratio be high enough
to allow anticlinal and periclinal wall trajectories to be visibly evident.

Condition B demands that the precursory phases of cell division “recognize”
the principal directions of growth and orient the cell plates, and consequently the
new-formed partitions, normal to one of the directions (in the plane of the two
remaining). Such partitions being orthogonal to the smoothed outline of the mother
cell wall can preserve this orthogonality during subsequent growth if the partition
and the outline are normal to two principal directions (the partitions must be
considered with regard to the smoothed outline of mother cell wall, because the
contact angle on both sides of the partition subsequently increases from 90° to
about 120° due to the tendency toward hexagonal pattern formation).

It is a working hypothesis that there is a tendency of cell divisions to be normal
(in sense of cell plate orientation) to a principal direction of growth, and that this
tendency is the higher the higher is the anisotropy ratio. This hypothesis is based
on the observation that, within groups (packets) of cells of the same lineage all
derived from one cell within a meristem, there is a relation between the degree of
growth anisotropy of the group and the conformity of orientation of the partitions
within it. The more pronounced is the maximal increment of one dimension of the
group, say /;, in comparison to increments of the dimensions orthogonal to /j,
the higher is the tendency of partition orientation to be normal to the extremal
(maximal or minimal) increment of the group size. The majority of cell divisions
are normal to the direction of maximal increment, however some are normal to
that of minimal increment.
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Condition C points out the importance of steadiness in the pattern of principal
direction trajectories. Only steady or nearly steady patterns of principal trajectories
are considered in this paper, but it should be noted that steadiness characterizes
a very broad class of growing organs, as will be shown later.

Important hints about principal direction trajectories can be derived from
inspection of the surface layer of an organ. Usually periclinal and anticlinal walls,
which maintain mutual orthogonality during growth are evident in this layer. This
indicates that one principal direction is normal to and the two remaining are tangent
to the surface. There are no obvious deducible reasons that this must be so, in
contrast to the principal directions of stress, however there is a good empirical
basis to infere that it is so. On this assumption the shape of an organ provides im-
portant information about the trajectories of the principal directions of growth,
at least in proximity to the surface. One trajectory is normal to, and the two remaining
are tangent to the surface. Observe that this “rule” is already inherent in the statem-
ent that trajectories of principal directions of growth are manifested by the visible
trajectories of the periclinal and anticlinal walls, because what is periclinal and
anticlinal is defined with reference to organ surface.

The orientation of the two principal directions that are tangent to the surface
can be recognized by epidermal cell patterns and/or by consideration of organ
symmetry. If an organ is a figure of revolution around its axis, and if its tip does
not rotate during growth, one principal direction at a point on its surface must
be along the meridional line, the other along the latitudinal line crossing the point.
Since the principal direction trajectories are continuous, their pattern when known
at the surface can be extrapolated into the organ interior.

ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS THAT CAN COINCIDE
WITH THE TRAJECTORIES OF PRINCIPAL DIRECTIONS OF GROWTH

A coordinate system (y', y2, ) such as we seek should obey two conditions.
1) One coordinate surface should coincide with organ surface, for instance, in the
case of paraboloidal apical domes a paraboloidal coordinate system (u, v, ¢) is
appriopriate (Fig. 2a). The coordinate surface v=constant then represents the
dome surface. 2) The eigenvectors of the symmetric part of the growth tensor T},
represented in this coordinate system should coincide with the coordinate lines,
which means that the tensor components, except those on the main diagonal, are
skew-symmetric, i.e. T,,=—T,, when p#q. What can be inferred from this con-
condition?

The physical component T, corresponding to the tensorial component #7=vg

. Ve . . . o
is Tpe= ]/3 Vo (without summation over p and g). The covariant derivative
aq

ovP ;
is vh = 3y + I'" y" (summation over r). Thus the condition that the nondiagonal
components must be skew symmetric can be written:*
dvP

. denotes partial derivative and not intrinsic or absolute derivative
y
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refers to the way of defining the field ¥ and will be considered in next section. Con-
dition (B) refers to the coordinate system alone, which we will consider now.

For orthogonal coordinate sysiem Iy =r; =0, if p, g, r are all distinct. Thus
we can conclude that in case of non-vanishing Christoffel’s symbols, when p#gq, r
is either equal to p or to ¢. For a specified r condition (B) can be written:

n

8o Lgp=—8ua T}, » when r=p,
8op Ihy=—80 I'?,, when r=gq.

Since for orthogonal coordinate systems (Spiegel 1959):

L o8 4 oo 8 N
®? 2g, 06)° “T o 2g,, OyP

P =

we see that condition (B) is fulfilled for these systems.
Several orthogonal coordinate systems have been selected for presentation by
graphs and by equations that relate specific systems to rectangular coordinates. The

scale factors kf=]/§ (without summation over i) are given too, because they are
important in specification of the field ¥ for the growing organ, as explained in the
next section. -

The geometric meaning of a scale factor is the following: If we consider two
neighboring coordinate surfaces y'=c, and y'=c-+ 4c, where ¢ is a constant, then
the physical distance between these surfaces is 4c A;. For instance, A, for parabo-
loidal coordinate system (u, v, ¢) (Fig. 2a), is h,=) u?>+v?. This means that the
distance between the anticlinal surfaces u=c and u=c+ Ac does not depend on ¢
but on u and v, and is Ac]/ﬂ?. If we consider w-lines as periclines and v-lines
as anticlines (Fig. 2a), the distance between the periclines v=c and v=c-4c is
also Acl/u“ﬁ—v".

The coordinate systems are grouped according to the type of organ the surface
of which conforms to the system (Figs. 2-6). The systems presented are those which
will be applied in subsequent papers.

THE IMPORTANCE OF THE NATURAL COORDINATE SYSTEM FOR DESCRIPTION
OF GROWTH

The natural coordinate system facilitates calculations of the field V¥ for the
whole organ from fragmentary data. Observe that the field cannot be defined ar-
bitrary because the growth of all continuous elements must be compatible, i.e.
the various organ parts must not be torn apart. Compatibility is secured if the
field V is expressible by contravariant components, and if each component * is
a function of p-coordinate only. The last condition is fulfilled if the eigenvectors
of the growth tensor coincide with coordinate lines (condition A in the previous
section, which means that we are dealing with the natural coordinate system).
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Fig. 3. Natural coordinate systems for marginal meristem of a leaf

Condition A implies that v” is the same over the whole coordinate surface y?=a.
What is its implication with reference to the physical component ¥, (whenever
we deal with physical components we use capital letters as symbols). We have
V1=|/g_11 v!=h, v! where the component of the metric tensor, g,,, and also the

scale factor, h,=}/g,,, are functions of »', ¥* and y3, while ¥ is a function only
of yi. Expressions for ¥, and ¥, are analogous.

Let V' be known along the coordinate line y' such that y?>=a, y*=b, where
a, b are constants. Let us denote the physical component ¥, and the scale factor
hy along the specified coordinate line by V, and %, respectively, i.e. ¥; means:
Vi (¥, y*=a, y*=b). We thus have on the specified line: ¥; =k, »' and in general:
Vi=h, v'. Introducing v* from the equation for the specified line into the last
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hy
equation we obtain V1=7;i V,. Similarly, if we now v? on one line y? specified
L

by y'=¢, y*=d, the physical component V, is V2=;—2 V,. This procedure of
scaling of V for the whole organ agrees with that presented earlier (Hejnowicz
(grad G)?
(grad G)?
displacement line along which the vector ¥ is known, and G is a scalar such that
grad G
|grad G| -
running through the considered point, and |grad G| gives the magnitude of V.
According to present notation (grad G,.) =§?§d G. Namely, we have for the com-
(grad G)?
'~ (grad G)?
grad G
|grad G|

means that G is a function of y' only. In a curvilinear orthogonal coordinate sys-
tem we have:

1982) according to which V= . grad G, where ¢ defines this

e, where e, is a unit vector tangent to the displacement line

ponent ¥V, ¥V, t grad G. Now grad G is tangent to the co-

ordinate line y!, ie. =1, (where ¢, is the unit base vector), which
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h
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1
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variant component. The same procedure for ¥, starts with ¥, 12=m grad G
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(but now grad G is tangent to the coordinate line y?, so the G is not the same as
previously).

Consider as an example, a paraboloidal apical dome in a paraboloidal coordinate
system w, v, . Let the apical dome grow both in length and in width. To model
its growth we must decompose its growth tensor into two parts, one for growth
in length and another for growth in width, because we must specify the components
of V¥ separately. The growth in length is expressed by only the u-component of V.
The growth in width is expressed by only the v-component of V.

Considering first the growth in length let, for instance, ¥, be proportional to u

2 1 2
on the axis which is defined by v=0. Thus the field ¥, is V,‘zl/-::/—;z.—v— ku =

=ky"u3—|-:v_2. This V, enters the growth tensor which describes the growth of the
dome “in length” (Hejnowicz et al. 1984) and which is in paraboloidal coordinate
system. Let us denote this tensor by U.

Consider now the growth “in width”. The width of the dome corresponds to
the v-coordinate line. An increase in the v-dimension of the dome requires a non-zero
v-component of the field V. Let the rate of width increase at the dome surface,
i.e. when v=s, at a certain distance from the vertex, u=hb, be 1, i.e. V,=1 when
u=>b and v=s5. We need to know ¥, as a function of distance from the axis. Imagine
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that inspection of transections through the dome enables to make the assumption
1
that ¥, is proportional to v (unrealistic but simple) i. e. V,=;— v when u=b.

]./u2+ vZ 1

Thus the field ¥, for the whole dome is V,=—=———= — v. This field
]/b‘-}- v s

enters the growth tensor formulated for the paraboloidal coordinate system and

describes the growth of the dome ““in width” when V,=v 1/s at u=b. Let us denote

this as tensor W.

Tensors of the same rank can be added. If we add the two growth tensors U
and W we obtain the more general growth tensor which describes the growth of
the apical dome both ““in length” and “in width”, i.e. the apical dome which re-
mains paraboloidal but which width measured at certain distance from the vertex
increases.

The considered example illustrates what relations or attributes are steady during
the mode of organ growth considered in this paper. The pattern of principal direc-
tion trajectories is steady. The type of organ shape is steady. The geometry is not
necessarily steady. The considered apical dome described by U+ W remains pa-
raboloidal during growth, but becomes wider and wider.

Details of using the natural coordinate system in modeling of growth of plant
organs will be illustrated in a subsequent paper (Hejnowicz et al. 1984).

THE IMPORTANCE OF PRINCIPAL DIRECTION TRAJECTORIES IN STUDIES
OF ORIENTED MORPHOLOGICAL PHENOMENA

It is tempting to ask what might be the relationship between the principal direc”
tions of growth and directions distinguished with regard to other phenomena
and processes occurring in growing organs. The list of the phenomena could be
ong, but let us examine two examples.

ORIENTATION OF CELL DIVISIONS

In many meristematic organs the periclinal and anticlinal walls can be recognized.
Since they remain orthogonal during growth, we can infer that the new partitions
produced by cell divisions are oriented in planes of principal directions of growth.

It is known that in organs growing mainly in one direction, s, the orientation
of cell divisions is quite regular; majority of the divisions result in partitions per-
pendicular to su,x and a rib meristem arises. Obviously s, is in the principal direc-
tion having the maximal growth rate. The growth rates in the two remaining prin-
cipal directions are much lower in such cases; yet there are some cell divisions,
strictly normal to these directions also, though they are rare, for instance the
divisions producing longitudinal partitions in root meristem cortex. It seems that
the divisions are always normal to a principal direction when the principal growth
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rate corresponding to this direction differs distinctly from the rates in the two
remaining principal directions. A corollary hypothesis is that: a) there is a tendency
for a newly formed partition to be normal to one of the principal directions of
growth; b) that tendency is the stronger the more pronouced is the difference between
the principal growth rates.

The plane of cell division is considered to be the plane of minimum shear stress,
or shear-free plane (Lintilhac 1974). However, it is not clear exactly what the
term “‘shear-free plane” means for a cell. Is it a sectioning plane deteimined by the
stress status of the cell wall or of the cytogel inside the wall? The two planes do
not necessarily coincide, becausce the stress state within the cytcgel deperds not
only upon tractions exerted by cell wall but also upon arrangement of cytoplasmic
filamants and distribution of the local stresses resuliing fiom active interzctions
between the filaments. Perhaps the shear-free plane in Lintilhac’s concept (1974)
is equivalent to the plane element normal to a principal direction of growth.

ORIENTATION OF THE PRINCIPAL DIRECTIONS OF STRESSES WITHIN THE CELL WALL NETWORK

The growth of a plant organ is the result of the yielding of the cell walls to the
tensional stresses generated by hydrostatic pressuies of the piotoplasts and by
tensions occurring within the organ. The cell wall is in a state of tension which
brings about elastic strain and plastic deformation. The latter depends on wall-
-loosening activity which is controlled by the protoplast (Green 1973). In the
plane of the cell wall there are two principal directions of stress. The relation of
these directions of stress to the principal direction of growth is complex when a cell
wall is not in the plane of the two principal directions of growth. When it is, the
principal directions of growth and of tensional stress probably often coincide.
Even when the principal directions coincide, there are two possibilities ; the maximal
principal growth rate may coincide either with the maximal or with the minimal
principal stress. It seems that the second alternation is often true: the maximal
principal growth rate coincides with the minimal principal tension in the cell wall.
Such relation seems to be typical for cells growing at their tips (Hejnowicz et al.
1977). In cylindrical rubber ballon undergoing inflation distention starts in the
proximal part and the maximal principal stress is in the latitudinal direction. When
the strain becomes hardened in this direction distention is propagated acropetally
as additional gas is forced in. In a plant cell the strain “hardening” is actively re-
inforced by deposition of oriented cellulose microfibrils. If one principal direction
of stress is reinforced, the loosening activity of the protoplast favors plastic ex-
pansion in another principal direction of stress, which is that of minimal stress
(tension). If so, it is also the direction of maximal growth rate.

Stress can be recognized by the consequent elastic strain, thus a problem appears:
How can a cell recognize the principal stress if the corresponding elastic strain
is masked by plastic expansion? An appriopriate answer may be the oscillatory
variation of elastic strain in which the stress determines the frequency of the
oscillation.
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Whatever the mechanism of control of cell wall reinforcing, the principal direc
tions of growth must be related to the direction of ieinforcing unless the wall is
outside the plane of the principal directions. It is tempting to think that the major
role in controlling growth directionality in an organ is played by those walls that
are tangent to two principal directions of growth. Cell walls within a growing
organ may or may not be in such planes. However, those plane elements that to-
gether make up the organ surface a:e favored to be in the plane of the two principal
directions of growth. If this rational is valid then the epideimal tangential walls
play an important role in controlling growth directionality, in accord with the
suggestion made by Green (1980).
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Trajektorie gléwnych kierunkéw wzrostu, naturalny uklad wspélrzednych
w rosnqcym organie roSlinnym

Stres z(zznie
Gléwne kierunki wzrostu okre$lone sa przez wektory wlasne symetrycznej czeéci tensora

wzrostu. W kazdym punkcie istnieja trzy takie kierunki, wzajemnie ortogonalne, W przypadku
wzrostu izotropowego, powodujacego jedynie zmiang skali organu, nie moina wyr6zni¢ gléwnych
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kierunkéw wzrostu, bowiem wszystkie kierunki wokét punktu sa réwnowazne. Dwa albo trzy
elementy liniowe, np. elementy siatki $cian, stykajace si¢ w rozwazanym punkcie i utozone w glow-
nych kierunkach wzrostu zachowuja ortogonalno$é. Natomiast kat prosty miedzy elementami
nie ulozonymi w gléwnych kierunkach ulega zmianie w czasie wzrostu organu na kat ostry
albo rozwarty. Wzgledna elementarna szybko$¢é wzrostu liniowego woko6t rozwazanego punktu
przyjmuje wartosci ekstremalne (maksimum albo minimum) w gléwnych kierunkach wzrostu.
Okreslamy te ekstremalne wartosci jako gléwne szybkosci wzrostu. Im bardziej rézni sie od jed-
nosci stosunek dwu gtéwnych szybkosci wzrostu tym wyraZniej wyksztalcone sa glowne kierunki
wzrostu. W przypadku wzrostu izotropowego glowne kierunki nie sa wyksztalcone. Z polaczenia
elementéw liniowych, ktére w kolejnych punktach organu sa styczne do gléwnych kierunkéw
wzrostu otrzymujemy system ortogonalnych trajektorii. Tworza one naturalny uklad wspéirzed-
nych. Tensor wzrostu wyrazony w tym ukladzie ma diagonalizowana cze$¢ symetryczna, co wy-
nika z wlasnosci wektoréw wilasnych tensora. Wykazano, e w naturalnym ukladzie wspolrzed-
nych kontrawariantne skladowe wektora szybkosci przesunigé punktéw materialnych rosnacego
organu sa funkcjami tylko tych wspélrzednych do ktérych si¢ odnosza, t.zn. skladowa v
jest funkcja tylko wspolrzednej u,. Wiasciwosé ta umozliwia wyznaczenie pola wektorowego ¥
w skladowych fizycznych dla calego organu na podstawie fragmentarycznych danych o szybkosci
wzrostu na pojedynczej linii wspotrzgdnych, a tym samym wyznaczenie tensora wzrostu. Gloéwne
kierunki wzrostu mozna rozpozna¢ w rosngcym organie na podstawie trajektorii $cian komérko-
wych zachowujacych ortogonalno$¢ w czasie wzrostu. Trajektorie te znane sa jako perykliny i anty-
kliny. Istotnej informacji o typie naturalnego ukladu wspélrzednych dostarcza ksztalt organu,
bowiem na og6t jeden z glownych kierunkéw wzrostu jest normalny do powierzchni organu. Ze-
stawiono krzywoliniowe ortogonalne uklady wspéhzednych, ktére moga byé naturalnymi ukla-
dami dla kilku typéw rosnacych organéw.
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