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Abstract

The distribution of the relative elementary rate of growth (RERG) in apical domes

of various shapes and patterns of displacement lines can be analytically examined.

The geometry of these domes may be described by parabolas of n-th order, the

variant of the distribution of linear growth rate should be estgblished along any

displacement line (e.g. along the axis) and then the RERG can be studied as the

function depending on the position coordinates and the parameter n. Such investigations

of several aplical domes of various shapes have been performed. The results confirm '
the occurrence of the minimum of relative, elementary growth rate (in volum.) in the

subapical region of the dome independently of the type of geometry (n parabola

order).

INTRODUCTION

In earlier papers (Hejnowicz and Nakielski 1979, Hejnowicz 1982)
a model of a growing shoot apical dome has been suggested in which
the field of displacement velocity of the elements of the wall network
is described by the formula:

1
I_](l", Z)—— mgr_ad G(I’, Z),. (l)
where u(r,z) and G (r,z) are scalar position functions. The field u(r,z)
depends on the dome geometry, consists of: the shape of the apical dome,
the pattern of the displacement lines and of the increment lines, the outer
displacement line constituting the surface of the apical dome. The G (r, z)
‘field depends on the geometry and distribution of the rate of linear growth
along one arbitrarily chosen displacement line. To the given distribution of
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the rate of linear growth along this displacement line corresponds the
variant of growth of the whole apical dome, determined by this distribution
and dependent only on the geometry. Distribution of the rate of linear
growth along one displacement line generates thus, the growth organisation
of the whole organ. This distribution will be further referred to as ,,promoter”
of growth. The field V(r,z) is shaped, therefore, by two independent
factors — geometry of the organ and growth promoter.

The aplical dome was so far the object of studies (Hejnowicz and
Nakielski 1979). Its geometry (shape and displacement lines pattern) were,
determined by a family of parabolas, whereas the growth promoter was
deduced from the knowledge of the rate of growth in different regions of
the apical dome. It was found that an interesting depression of the
relative elementary growth rate in volume (RERG,,) occurs at the apex
in the core of the subapical region. Such a picture of growth corresponds to
the situations observed in the apices of seed plants. The question arises
whether a similar depression is present in apices with a different geometry.
This will be dealt with in the present paper. Its chief aim, however,
is to introduce a variety of geometries.

It seems that a wide class of geometry types may be obtained by using
power functions z = a; r", where a; and n are constant positive parameters.
For r>0, with established n and changing a; they describe a family
of curves starting from the origin of the coordinates system. It is assumed
that this point is the tip of the dome and the curves are the pathways
along which the points of the dome are displaced during growth. With
their mirror image in relation to he z axis they represent the displacement
line pattern in the medial plane of the longitudinal section through the
shoot apex. According to the conclusions from earlier papers (Hejnowicz
and Nakielski 1979, Hejnowicz 1982) it is assumed that the pattern
of increment lines in the same plane forms trajectories orthogonal to the
displacement lines. The equations of the increment lines are thus:

1 1 . - 1 ;
5 r2+? nz? = const. This results from the condition f' = —-97 which must

be fulfilled by the derivatives of the two arbitrary functions f and g the
graphs of which intersect at a right angle.

The apical dome is a figure of revolution open at the level at which
leaf primordia emerge, formed by the revolution of the outermost displacement
line aropnd axis z. A cylindrical coordinate system r, ¢, z is used in which,
according to the premisses adopted, the displacement lines do not depend
on @. :

Domes with various geometries may be obtained by taking families of
curves characterised by different parameters n. Within one family the
displacement lines depend on a; To various families correspond various
displacement line patterns, patterns of increment lines and shapes of the
apical domes. The latter for the examined domes are shown in Fig. 1.
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n=2 n=4 ' n=6

Fig. 1. Shapes of three apical domes described in the paper. The geometry of the domes

is represented by families of parabolas of the order: ¢—n=2, b—n=4, ¢--n=6. In the

right part of each dome two displacement lines from each family are shown. The outer

line constitutes the surface of the dome. In the left part the straight lines: -=0.5, z=3.5,

z=10, r=3 are marked. For these lines and the line corresponding to the surfaces of the

domes RERG ,; graphs are presented in Fig. 4. The domes are truncated at the same level by
the plane passing through point 4 (10, 10)

At any point of the dome vector V is described by formula (1). The
direction of this vector is the same as that of gradient G and coincides
with the tangent to the displacement line passing through this point. The
absolute value of V depeneds on the values of the partial G derivatives
and on the u function. The field G (r,z) is of potential type. The lines
of the field coincide with the displacement lines, whereas the equipotential
lines with the increment lines. On each increment line the G value is
different according to the dependence introduced by the growth promoter.
The field p(r, z) is described as follows:

_ (am?
a (Azo}z '

pr, z) 2)

where Am, Az, are the distances between neighbouring increment lines (Fig. 2).

oG

. This

On the dome axis pu = 1, whereas grad G has only the component

(454
component is, according to eq. (1), the rate of linear growth along the
axis. If we know this rate and are able to express it in the form of
a function — the promoter — it will be easy to obtain G (0, z,) by integra-
tion of the promoter. Hence, on the basis of the geometry of equipoten-
tial lines we find the scalar field G (r,z) and further the vector field
V(r, z). Differentiation of fieldV (r, z) supplies information on linear, in area
and in volume relative elementary growth rates in the whole organ
(Erickson 1976, Hejnowicz and Nakielski 1979, Hejnowicz 1982).
Mathematical description of the dome geometry by means of power
functions has two advantages: 1) it allows to include in the investigations
a relatively wide scope of shapes found in real shoot apices; 2) it makes
the geometry dependent on parameter n only, this giving the possibility

f
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Fig. 2. Apical dome with pattern of displacement lines and pattern of increment lines.

Displacement lines (d.l.) are 2nd order parabolas. the increment lines (i.].) are trajectories

orthogonal to the displacement lines. Points P and P, lie on one increment line and will

remain in the growing apex on the same line at any moment. Segments Am and Az,

denote the distances between the neighbouring increment lines. measured along the line
denoted by m and along the axis

of analytically studying the RERG distribution as the function of the
position and the latter parameter. Such studies for n in the interval
1 <n<6 were performed in the present work. Two variants of growth
promoter were applied:

I. The relative elementary linear growth rate is constant along the axis.
II. The relative elementary rate of linear growth along the axis is pro-
portional to the distance from the tip.

The results are graphically presented in the form of RERG,, graphs
for the domes shown in Fig. 1. They illustrate the distribution of the
relative elementary rate of growth in volume along the longitudinal line
r =23, along the transverse lines z=0.5, z=35 z=10 and along the
surface contour of the domes. A general analytical expression is given
for the relative elementary rate of linear growth (RERG,) in any direction.

SCALAR FUNCTIONS jpu(r,z) AND G(r,z) IN THE PARABOLIC APICAL DOME

We shall now deal with the shoot apical domes in which the patterns
of displacement lines are given in families of power functions of n-th
order where n is an integer number greater than unity. They will be
further referred to as parabolic domes of n-th order.
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Let the rate of displacement of the points lying on the dome axis

-~

; o 2 . G )
be any function of their distance from the tip:[V (0, z,)| = (;ﬂ—zj(z,,].
1z

Then G (0,z,) is: G(0.z,) = F (z,) = [ f(z,) dz,. We have the same G value
in all points lying on the increment line passing through (0, z,) (see Fig. 2).
Thus, G (r, z) is:

G(r,z):F(J%-r2+z2).' 3)

This is a general expression for the field G (r,z) on the parabolic domes.

Let us give it more specifity by adopting variants I and II of distribution

of the relative elementary linear growth rate RERG,, on the axis.
Variant I. RERG,., = c. This RERG,,, is obtained when on the axis

G : : 1

(ﬂ = ¢z, Let us assume ¢ = 1; by integration we get G (0,z,) = ?zﬁ and
oz

finally:

G(r,2) =% (% r2+zz). )

2 ) oG 1
Variant Il. RERG,,, = cz,. We get it for > :—2-623, hence, by the

same procedure as before we get: G (0, z,) = S z2 and

6 o
1/1
G(r,z)= —(— r2+zz)‘;‘ 06)
6 \ n
.. oG oG ) . .
The derivatives W and fulfill in both variants the relation:
r nZ
1 0G 1 0G
— S 6)
roor nz 0z

This relation can be utilised for calculation of the field u(r,z). As known,
p changes according to eq. (2) with the distance between the neighbouring
increment lines. But it is also known that the increment lines are
equipotential lines of the field G (r,z). Hence eq. (2) is equivalent to the
following one:

[grad G(r.z}l2

uir,z)= (7)

lgrad Go.,)|* ’



394 J. Nakielski

where, like before, we take gradients G at points (r,z) and (0,z,) lying
on the same increment line. Let us calculate gradients G from formula
(3) and, taking into account eq. (6) let us introduce it into eq. (7). We
then get:

rt+n? z?
e, z)= nrl+n?z*’ ®
This equation does not contain G (r,z), it is the same for any variant
of promoter growth. This is in agreement with the statement at the
beginning that the field u (r, z) depends exclusively on the dome geometry.
For fixed r, z the pu values are however, different in dependence on
the n-th order of parabola passing through point P (r,z). Thus, different
parabolic domes have different p (r, z) fields.
The parameter n is also present in egs. (3, 4, 5) defining the field
G (r, z). This results from the fact that in function G a certain dependence
on geometry is inherently associated with the course of the equiscalar

line on the [r, z] plane.

(;:ROWTH RATES

The general expressions for linear, in area and in volume growth
rates may be found in the papers of: Richards and Kavanauggh
(1943), Erickson (1976), Hejnowicz and Nakielski (1979). We shall
now deal with relative elementary growth rate in volume RERG,, In
each point of the growing organ RERG,,=div V. The divergence of
vector V in the cylindrical coordinate system is calculated by the formula:
1 ov,

s By ©)
0z . r 0z ro oo

1V I d
divy= 24— =

where V,, V,, V, are components of V in the coordinate directions. Let us

transform eq. (9) by expressing the component rates by p and G functions
2

. 0 : ;
according to eq. (1) at —> =0 (this resulting from the model construc-
O

tion). Taking into account egs. (6) and (8) we get:

RE RG vol =

dz% z 0z z Ordz
2nr? z (n—1)* G

r?+4n? z?

r?+nz? [ G 2 0G r 0% G]

Kemlliadl - ol e 10
(r*+n?z?)?* 0z e
G being any function fulfilling eq. (3). Particularly for G given by egs. (4)
and (5) in cases 1 and II of the growth promoter variant we have,
respectively:
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R+nr*+(T-nn*r*z22+Q2+nnz*

RERG,, (I) = 2 2P

) (11)

(—r‘z—i—zz)2
e} e kR
RERG, (Il = " [( 1) oy B2 2y

(r* +n? 22) 2 2
+n3(l+n)z4]. (12)

In both these expressions RERG,, depends on the coordinates and
the n-th order of the parabolas forming the displacement line pattern.

When studying the function at various n one may conclude as to the
distribution of the growth rate on domes of various shape.

In the same way the relative elementary rate of linear growth (RERG))
may be expressed. For any direciion ¢ RERG,, is given by the following
expression: _

2n?rz2 (n—1) G nr*+n*z? 0*G
RERG,, = | —5——5— — cos?
9 [ (r*+n22z%)? or r*+n*z2 or? at
~2m*r2z(n—1) 8G- nri+n*z* %G ,
T nZ 2% Ay T 5 | cos” f+
(r*+n®z%) 0z r‘+n®z 0z
2n2rz2 (n—1) G 2n*r*z(n—1) G
(r*+n?z%)* 0z (r2+n*z%)?  or
2n(r*+nz?) 9*G n r*+nz2 G 5
cos o-cos f+| — ———5—5 — | cos” v, 13
r’4+n?z* 0roz b r r*+n?z* or V (13)

where cos o, cos fi, cosy are direction cosines of e to the base unit
vectors of the cylindrical coordinate system. The partial derivatives of G may
be calculated from egs. (4) and (5), respectively, for variants I and II of
distribution of linear growth rate on the axis.

RESULTS

In the first part the results of study of the functions RERG,, (I)
and RERG,,, (II) will be presented in reference to r, z and parameter n
assuming values from the 1 <n < 6 interval. RERG,, is the function of

two variables defined in the plane of positive r, z. One variable remains
fixed and the respective chance of variability of the other is studied. Hence
the RERG,,, graphs characterise the distribution of the relative elementary
rate of growth in volume either along straight lines z = const (r variable)
or along straight lines r = const (z variable). These lines correspond in the
three-dimentional dome to the surface of cylinders with radius r (where
z is the symmetry axis) and to cross sections at distance z from the tip.

In the second part, based on the results of investigation of the functions,
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the distribution of RERG,,, is presented for three different domes. These
will be parabolic domes of n =2, 4, 6 (Fig. 1).

MATHEMATICAL ASPECTS OF FUNCTIONS RERG,,, (r.2)

Variant I. RERG,,, (I) given by eq. (11) runs as follows:
1. For z constant (Fig. 3a) in the interval 1 <n <4 it is the increasing
function of r. Its minimum lies on the axis (r=0), then it increases
changing the sign of the derivative at the point of inflection. The points
of inflection for z=2, at n=2 and n=4 are marked with arrows in
Fig. 3a. They are determined by the positive roots of the equation:
—9r*+222 n (In—10) r* —z? n* (n—4) = 0. For various z the points are situated
on straight lines r = 1.58z and r = 4z, respectively. In the interval n >4
RERG,, (I) shows a slight maximum on the axis (when r = 0) and a minimum

3
rious z in the case n =6 (Fig. 3a) they lie on the straight lines r = 107z
and r = 6.44z.
2. For r = const (Fig. 3b) in the interval 1 < n < 4 RERG,,, (I) is a decreasing
function of z. It has a maximum for z = 0 (equal to n+2), it then decreases
with the increase of z. The inflection point is determined by the equation:
—n3 (n—4) z*+2n 3n—=2) r? z2—r* = 0. In the interval n > 4 RERG,,, (I) has

n(n—4)
for r = \/¥z It passes twice through the inflection points. For va-

|
8 8
71 7 il
61 61
= 3|
>
o 2~
w4 W 44
o ns2 "\ Vs
3 t\”“ 3
,6 n=2
% g . n=4
14 14 —‘ n=6
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2 4 6 8 10 r- 2 4 6 8 10 z
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Fig. 3. Graps of RERG,, (I): a—in dependence on r for =2, b—in dependence
on z for r=3, for the parameters n=2, 4, 6, respectively. Description of function in text.
Arrows show points of inflection
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|

a maximum at z=0 and a minimum at z = \/-—-( 2
ni\n—

through the inflection points for the line r =3 shown in Fig. 3b, which
at n=6 are z=0.19 and z = 1.99.

Variant II. From the analysis of function RERG,,, (II), eq. (12) we get:
1. For z=const RERG,, (II) is an increasing function of r for all n
parameters. It has a minimum on the axis (r=0) and increases in the
direction r. The slope of the function plot depends on the value of constant
z. For three values of z= const (z=0.5 z=235, z=10) and parameters
n=2,4, 6 the RERG,, (II) graphs are shown in Figs. 4b, d, f.
2. In the same figure the graphs of RERG,, (II) are visible for r = 3.
The function RERG,, (II) at first decreases and then increases in the
direction of z. It reaches minimum at the points which constitute positive
roots of the equation: 2n°z®(n+1)+n* (N> +n+10)r? z*+2n* (N> —8n+
13) r* 22 4+r° (—=6n*+7n+3)=0. In plane [r,z] for n=2,4,6 the minima
are determined by the straight lines z = 0.43r, z = 0.39r, z = 0.30r, respectively.

r. It passes twice

RERG,,, DISTRIBUTION ON SHOOT APICAL DOMES

Let us consider the parabolic domes of the shoot of n-th order
(n=2,4,6). The distributions of the rate of growth on these domes along
the longitudinal line r = 3, along transverse lines z=0.5, z=35, z=10
and along the contour of the dome surface in the axial plane are shown
in Fig. 4 Although the graphs were prepared for only several lines,
a quite good picture of growth in the whole organ is obtained. In the
description of the distribution of growth rate three zones are distinguished :
the subapical one, the pith-rib meristem and the peripheral zone.

Variant I. The constant relative elementary rate of linear growth along
the axis, the same for all domes, implies a constant, but different for various
domes, relative elementary rate of growth in volume along this line. The
surface of RERG,,, (I) resembles a trough the bottom of which is situated
at a constant depth, whereas the walls are more and more steep as we
advance along the bottom towards the tip. For increasing z’s the walls
slope milder and milder and at the level z= 10 the trough is almost
unnoticeable. For n = 6 (Fig. 4e) in the subapical part the trough separates
two small maxima lying along the axis. The increase of the relative
elementary rates of growth in volume with the distance from the axis
in the direction of the dome surface in the subapical part is characteristic.
At the height of z=0.5 at the surface of dome RERG,, (I) for n=2
the rate is two times higher than close to the axis. For n =4 and n =6
these proportions are still larger (four to six times).

Variant IL For this variant of promoter the RERG,, graphs along the
dome axis are straight lines ascending with the z values. Their slope
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Fig. 4. Distribution of RERG,,; on parabolic domes of n=2, 4, 6th order for two variants
of linear growth rate along the axis: I—RERG =1 (Figs. a, ¢, ¢). 2-RERG,.,=2
(Figs. b, d, f). In the base of each graph (i.e. in plane [r, z] the central longitudinal
section is inserted (Fig. 1.) seen laterally. RERG , is laid off on the axis perpendicular
to the plane of the base. The RERG,,, graphs are denoted as follows: for line z = 0.5 by the
upper edge of the shaded surface, for line z=3.5 by the upper edge of the hatched
surface, for line z=10 by the upper edge of the clear transverse surface visible at the
front, for line r=3 by the upper edge of the longitudinal surface on the left side of
the axis, for the contour of the surface of the domes by heavy continuous line. All graphs

are in the same scale, but the RERG,,, unit is one half that in Fig. 3
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diminishes with the increase of n. RERG,., the same for all domes,
gives different, but proportional to the distance from the tip, values of
relative elementary growth rate in volume. The RERG,,, (II) surface resembles

a trough more distinct than in the former case tapering and strongly
sloping towards the tip. It is limited by two straight lines symmetric

to axis z and meeting in the dome tip where the function has a zero
value. The trough is narrower and shallower for n =2, wider and deeper
for larger n’s. On the dome surface (heavy continuous line in Figs. 4b, d, f)
RERG,,, (IT) at first rises markedly, than falls forming a characteristic
hump and then rises once more. At the z=0.5 level at the surface
of the dome the growth rate is 8 (for n=2) to about 25 (for n=6)
times higher than on the axis.

DISCUSSION

The results of investigations on the growth rate distribution on various
parabolic domes confirm the occurrence of RERG,, depression close to the
axis in the subapical part, independently of the geometry type of the
dome. The depth of the depression varies. It depends on the order n
of the parabolic curves representing the displacement lines and on the variant
of the growth promoter. The latter dependence is particularly pronounced.
The RERG,, depression in variant II (Figs. 4b, d, f) is greater than in
variant 1 (Figs. 4a, c, e). For the same growth promoter function there
are deviations from the n-type dome geometry. This deviation, however, is
less important as compared with the basic differences resulting from the
adoption of other variant of distribution of the rate of linear growth along
the axis.

In the real shoot domes the relative elementary rate .of linear growth
along the axis is neither constant as in variant 1 nor proportional to the
distance from the tip as in variant II. It would seem that in general
it constitutes a certain combination of these two variants. If we assume
that it is constant in the subapical part, later increases with the distance
from the tip and again becomes constant (the value of the constant will now
be different) at the base of the dome, then the RERG,, depression will
be still deeper. Such a situation could be visualized by the combination
of graphs RERG,, (I) and RERG,, (IT) (Fig. 4) within the same n. It
has already been discussed for n=2 by Hejnowicz and Nakielski
(1979).

Analytical study of the distribution of the growth rate in dependence
on the position coordinates and the parameter n (parabolic type of geometry)
is not difficult. In the present paper RERG,, was studied. The relative
elementary rate of linear growth may be studied similarly in any direction
(eg. (13)). Other variants of RERG;,, distribution (the promoter) can also be
assumed. Particularly the promoter resembling the linear growth rate distribution



400 N J. Nakielski

in the real domes may be introduced in the form of a graph (the graphic
approach —Hejnowicz and Nakielski 1979).

Extension of the class of parabolas makes it possible to study any
domes, even those differing widely in shape. The n may represent temporal
change of apical dome shape. The problem will be the subject of a forthcoming
paper.

It is known that the internal geometry of the shoot dome (particularly
the pattern of the displacement lines) is “read” from the directions of the
cell wall elements network on longitudinal sections (Schiiepp 1966). The
elements of the wall network are arranged in peri- and anticlines distinctly
visible in the peripheral parts. If we disregard the subapical zone, it seems
that in many seed plants the periclines correspond to the displacement
lines and can be described for instance by parabolic curves. Very close
to the tip, however, it cannot be established what kind of curve is the
displacement line, certainly it is not the pericline there; the pericline in this
part runs almost parallelly to the dome surface. Neither could it be
a curve of parabola type, rather a straight line segment running from the
tip. If is assumed that the diplacement line at the tip it is also the
n-th order parabola, an apparent paradox results consisting in a more
and more advanced differentiation of RERG; in various directions when
we approach the tip. This differentiation is the grater the greater is the
n-th order of the parabolas and it disappears when the parabola passes
into a straight line (for the extreme value n=1). Such assumption is
unavoidable in the case of analytical studies, where it is required that
the displacement line be represented by continuous functions characterised
by the same parameter n in the whole region [r,z]. Hence this paradox
occurred as well in the preceding study (Hejnowicz and Nakielski
1979). In order to avoid it, the displacement lines at the tip should be
straight, thus they would differ essentially from the parabolas considered.
Since the RERG ,,, is the sum of RERG; in mutually orthogonal directions,
then in the case when RERG, reaches- higher values in the anticlinal
than in the periclinal and latitudinal direction (and such results are
actually obtained) the RERG,,, values obtained in this region are exaggerated.

In order to describe the growth distribution in any organ it is necessary
to know the field V(r,z). In the here presented model of the dome we
obtained it by means of the scalar functions G and u. The knowledge
of field V is indispensable not only for calculation of RERG, but for .
investigation of the variability of any quality characterising cells’ in the
growing organ, such as protein concentration, hormonal activity etc. (Silk
and Erickson 1979). The material derivative defining the change of this
quality (let us denote it @ (x, 1)) is, namely

D@ 0P V-V
Dt ot
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Thus, it is inherently dependent on ¥(x,t). The model used in this study
suggests a method for finding the field ¥ on shoot domes of various
shapes.

Many aspects concerning the problems of organ growth can be recognised
from their geometry. The great importance of such investigations is stressed
by Silk and Erickson (1979) and Nicklas and Mauseth (1980).
The latter authors point to the relation between the geometry of the shoot
apex and the zonation pattern (zonate pattern within shoot apical meristems).
They reach the conclusion that “the zonation pattern” may result from the
geometrically conditioned differences in the cell dimensions. The position of
the cell in the growing shoot apex influences its dimensions if they can be
changed. If the cell volume is assumed constant the influence of geometry
becomes visible in a different number of divisions in the particular zones.
From the present it follows that the geometry influences the zonation in
respect to RERG,,;. It may be also concluded that the geometry influences
the zonation in respect to cell division frequency.

The presented model describing the displacement lines of parabolas of n-th
order may be useful, particularly in model studies with the use of computers.
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Wplyw geometrii wierzcholka pedu na rozmieszczenie szybkosci wzrostu

Streszczenie

W rosnacym wierzcholtku istnieje pole predkosci przesunig¢ elementow siatki Scian komor-
kowych w czasie. Mozna opisaé¢ je skalarnymi funkcjami wspolrzednych i za pomoca metod
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matematycznych, wzigtych z analizy pola, oblicza¢ wzgledne elementarne szybkosci wzrostu
(RERG) w réznych czgiciach organu. Rozmieszczenie RERG wewnatrz i na powierzchni -
wierzchotka zalezy wtedy od dwoch czynnikow: geometrii organu i rozmieszczenia wzglednej
elementarnej szybkosci wzrostu liniowego (RERG,;) wzdluz jednej, dowolnie wybranej linii
przesunigé (n.p. wzdluz osi). W niniejszej pracy zbadano wplyw obu czynnikow wprowa-
dzajac roznorodno$é¢ geometrii za pomoca rodzin parabol réznego stopnia n. Wzgledna elemen-
tarng szybkos¢ wzrostu objetosciowego (RERG, ) dla dwoch wariantow RERG, ( 1—RERG;,
na osi jest stale, 2—RERG, na osi jest proporcjonalne do odleglosci od szczytu) wyrazono w pos-
taci funkcji, uzaleznionej od wspéirzednych i parametru n. W oparciu o przebieg zmiennosci
funkcji przedstawiono wykresy RERG, dla trzech wierzchotkéw parabolicznych o réznych
ksztattach. Z rozmieszczenia RERG,; na tych wierzchotkach wynika, ze charakterystyczna
depresja szybkosci wzrostu objetosciowego w czesci przyszczytowej moze by¢ cecha wszystkich
wierzcholkéw parabolicznych, niezaleznie od stopnia parabol. Zwrécono uwage na szerokie
mozliwosci, jakie w badaniach wzrostu merysteméw wierzchotkowych daje zastosowanie para-
bol réznego stopnia do opisu geometrii.
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