"Carpelloid stamens" in *Lotus sp.*

WANDA WOJCIECHOWSKA

Laboratory of Interspecific Hybrids, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 30/36, 60-479 Poznań, Poland

(Received: May 28, 1980)

Abstract

The anatomy and cytology of flower buds in which one or two stamens underwent modifications of various degree, termed in the teratological terminology “carpelloid stamens” were analysed in *Lotus*. It is presumed that these disturbances were due to the hybrid character of the studied plants.

INTRODUCTION

A number of authors stress the usefulness of observations of flower abnormalities in studies on the process of flower differentiation. Meyer (1966) collected data since 1790 (Goethe’s essay on metamorphosis). The genus *Lotus* is mentioned in this publication among the species of Leguminosae, and the abnormality noted in these plants was classified as petaloidy of the stamens or of petal-resembling formations instead of stamens. In the present paper “carpelloid stamens” (according to the terminology of Meyer) so far not reported in *Lotus* are described.

MATERIAL AND METHODS

*Lotus* flower buds (probably *Lotus corniculatus* L.) from wild plants growing on an experimental plot of the Institute of Plant Genetics in Poznań in the years 1975 and 1976 were fixed. The buds were longitudinally cut with the use of the paraffin technique and stained with iron haematoxylin and counterstained with Fast green. In 1975 among the preparations inspected 25 per cent and in 1976 — 18 per cent showed atypical buds. In the period 1965-1969 two species of *Lotus* grew on the field of the Institute among other plants: *L. corniculatus* L. and *L. uliginosus* Schk. Both these species included representatives of numerous populations collected all over the territory of Poland. Seeds of these
plants had been collected by Prof. T. Kazimierski and part of them
was sown in the same year on the Institute plot. In 1969 the field was
ploughed. *Lotus* is a perennial plant with dehiscent pods. It readily forms
clonal and the particular species of this genus intercross. The analysed
plants with abnormal flowers may thus have been hybrids of *L. corni-
culatus* × *L. uliginosus* or interpopulation hybrids of *L. corniculatus*.

RESULTS

In atypical buds among the ten stamens one or two were changed to
carpelloid ones. The diversity of various type transformations was high
— from stamens with growing out naked ovules at the base of the
head, over pistillloid forms, to pistils growing at the site of stamens
(Photos 1, 2). In the stamens with naked ovules normally developed po-
llen grains were seen, whereas in only few ovules could megasporocytes be
observed in the stage of prophase I. These megasporocytes were, how-
ever, deformed and stained poorly, this indicating that the process of
meiosis did not occur normally in them. Anatomical and cytological ana-
lysis of the pistillloid formations — “carpelloid stamens” showed that
they produced ovules and pollen sacs (Photos 3a, 3b, 3c and 4-6). How-
ever, the megasporocytes in the ovules and microsporocytes or pollen
grains in the pollen sacs of the “carpelloid stamens” degenerated.

In the unmodified normal anthers of flowers with “carpelloid sta-
mens” two-celled pollen grains formed, and in the normal pistils of these
flowers both normal meiosis and degenerated process in division I or
II were observed in the ovules. As a result part of the ovules in the
normal pistils developed normally so that in older ovules monospore
embryo sacs of *Polygonum* type were observed. The development of
ovules in the “carpelloid stamens” was always retarded as compared
with that in normal pistils of the same bud, for instance in the ovules
of a normal pistil prophases I were noted, whereas in the “carpelloid
stamens” there were only undifferentiated bulges of ovules, in another
bud they were in the tetrad stage and in the “carpelloid stamen” hardly
in prophase I. They were observed only up to prophase I, therefore it
is difficult to decide whether further development occurred normally. In
some “carpelloid stamens” ovules were absent.

DISCUSSION

In flower buds with abnormalities part of the ovules in normal pistils
and pollen grains in normal anthers and anthers with naked ovules de-
veloped normally as described by H a n s e n (1953) in *Lotus corniculatus*
L. Degenerating ovules observed in normal pistils in buds with abnor-
Photo 1. Longitudinal section of "carpelloid stamen" in *Lotus* with outgrowing naked ovule at base of head (×134)

Photo 2. Longitudinal section of young *Lotus* bud; the "carpelloid stamen" is as long as the stamens of the upper whorl (×53)
Photo 3a. Longitudinal section of *Lotus* bud; on the right from pistil "carpelloid stamen" which is half pistil and half stamen \((\times 37)\)

Photo 3b. Cross section from pistil-like side of the same "carpelloid stamen" as in Photo 3a \((\times 37)\)

Photo 3c. Cross section from stamen-like side of the same "carpelloid stamen" as in Photo 3a \((\times 37)\)
Photo 4. Fragment of "carpelloid stamen" from Photo 3a ending in a style and stigma; pollen sac is visible at base of style (×100)

Photo 5. Ovules of "carpelloid stamen" from Photo 3b (×260)

Photo 6. Fragment of pollen sac from Photo 4 with microsporocytes surrounded with tapetum layer, late metaphase I (×550)
malities correspond to the high percentage of degenerating ovules noted by B urb a r (1958) in L o t u s c o r n i c u l a t u s.

Natural and experimental hybrids of L. c o r n i c u l a t u s x L. u l i g i n o s u s are known (Gr a n t 1965, see Ref.). Recently the possibility of crosses of L. c o r n i c u l a t u s x L. u l i g i n o s u s has been confirmed by BAR c i k o w s k a (1974, 1976).

The abnormalities in flower structure of distant hybrids and mutants are well known (M e y e r 1966). Less frequently described are abnormalities of flower structure due to intraspecific crosses (e.g. J a r a n o w s k i 1972). The here described diversity of “carpelloid stamens” is also found in other species: pea (M o n t i and D e v r e u x 1969), tobacco (H i c k s e t a l. 1977), tomato (S a w h n e y and G r e y s o n 1973a) and blackberry (S h e a l y and H e r r 1973). It results from the studies of M o n t i and D e v r e u x (1969), F i s h e r (1972) and S a w h n e y and G r e y s o n (1973a) that the influence of external conditions is considerable on the transformation of stamens.

The occurrence of abnormalities in the formation of flowers both in hybrids and mutants may be explained by the fact that, as a consequence of genetic changes arising in these forms, disturbances appear in the production of endogenous hormones which are essential for flower formation (L o d k i n a 1977). Earlier studies of H i c k s (1975), S a w h n e y and G r e y s o n (1973b) and S a w h n e y (1974) support this hypothesis. Comparative studies of plants with normal flowers and those showing abnormalities may be a useful tool for understanding the genetic control of some development processes (S a w h n e y and G r e y s o n 1973a).

T o m e s (1979) and S w a n s o n and T o m e s (1980) demonstrated in L o t u s c o r n i c u l a t u s an ability to micropropagation. This ability and the readiness of forming clones will make possible investigation of identical plants with identical flower abnormalities under various controlled conditions of the environment. This will allow to establish the influence of external conditions on definite pistil transformations in Lotus.

Acknowledgments

The author is indebted to Prof. dr hab. Stanislaw S ul i n o w s k i for critical reading of the manuscript and to Mrs Eugenia J u j a for technical assistance.

REFERENCES

B a r c i k o w s k a B., 1974. Interspecific hybridization in L o t u s. Lotus Newsletter 5: 8.
B a r c i k o w s k a B., 1976. Interspecific hybridization in L o t u s. Lotus Newsletter 6: 9.
B u r b a r J. S., 1958. An association between variability in ovule development within ovaries and self-incompatibility in L o t u s (L e g u m i n o s a e). Can. J. Bot. 36: 65-72.


**Owocolistkowatość pęczków komonicy (Lotus sp.)**

**Streszczenie**

Analizowano anatomię i cytologię pąków komonicy, w których w miejscu jednego lub dwu pęczków wyrastały przekształcone utwory, w których ujawniły się w różnym nasileniu cechy żeńskie. W literaturze teratologicznej tego typu zaburzenia określa się jako owocolistkowatość pęczków. Przekształcone pęczki najczęściej nie wytwarzają prawidłowych gamet, natomiast w pozostałych normalnych pęczkach powstawały dwukomórkowe ziarna pyłku; również w normalnych słupkach tych pąków część zalążków rozwijała się prawidłowo. Przyjmuje się, że przy czyną opisanych zaburzeń był mieszczący charakter badanych roślin. Opisane zjawiska rozwija się na tle literatury.