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Abstract

The vectorial field of displacement velocities V in growing apical dome is calculated from the
scalar field adjusted to the geometry of the dome and to different variants of the distribution
of linear growth rate along axis. The distribution of growth rate in volume and the tem-
poral course of cell wall net deformation in the apical dome calculated from the V fit within
the range of empirical data when the linear growth rate along the axis increases with dis-
stance from the tip. The distribution of volume growth rate attains the minimum inside
the distal region of the dome where the zone of central mother cells occurs.

INTRODUCTION

In the apical meristem the growth rates in different parts are strictly interrelated
so that no cell can migrate past the others and all grow compatibly. Direct measure-
ment of these rates is difficult, if possible at all inside the meristem. Among indirect
methods, determination of mitotic indices in different parts of the meristem seems
to be most rational and simplest, However, this method is based on the assumption
that the duration of mitosis is constant, even if the duration of the whole mitotic
cycle is not, in different parts of the meristem. This paper shows how the distribution
of growth rates—linear in different directions, in surface area in different planes,
and volumetric—can be calculated on the basis of the geometry of the apical meristem
and the distribution of linear growth rates along the axis or along one meridional
line on the dome surface, according to the concept of the scalar field from which
the vectorial field of displacement velocities can be obtained (Hejnowicz, 1980).
This is done for a model of an apical dome in the form of a figure of revolution,
described in cylindrical coordinates r, z, ¢. The calculations are aimed at deter-
mining the distribution of:

1. linear growth in different main directions (periclinal, anticlinal, radial, lati-
tudinal);
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2. growth in area at dome surface, in axial, and in transverse planes;

3. growth in volume;

4. temporal course of expansion.

We explore two possible approaches to the model: analytical when the geometry
is given in analytical form, and graphical when it is in graphical form only.

1. Vector and scalar fields considered

Growth causes displacement of identifiable elements of the cell wall network
in respect to a reference element in a plant organ. To each point of the network,
which for our purpose may be considered as a continuum, a vector of displacement
velocity V can be associated so that the field V (r, z) is differentiable. In the case
of an apex, this field is steady or nearly so, if the reference element is chosen at
its summit.

Through every point of the apex a displacement line, defined by a parameter c,
and an orthogonal trajectory to the displacement lines can be drawn. On a parti-
cular orthogonal trajectory the parameter ¢ changes from 0 on the axis to some
maximum value on the surface. If the pattern of displacement lines does not change
in time, i.e. it is steady, the lines are identical with element paths. Only such a case
will be considered in this paper. Since our aim is to show the principles of the model-
ing work, we assume that also the shape of the dome is stationary, i.e. the dome
(open at its basis at the level at which leaf primordia emerge in the case of shoot
apex) does not change its shape during growth, this meaning that its surface is
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Fig. 1. Model of apical dome with displacement lines and their orthogonal trajectories
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tangent to the displacement lines. There are good reasons to consider that the
elements which are on the trajectory orthogonal to the displacement lines at a
particular moment, remain on this trajectory during subsequent growth (Hejno-
wicz, 1980). The present paper assumes this type of growth, which be called growth
preserving the orthogonality of periclinal and anticlinal walls (GPO).

Fig. 1 illustrates the geometry used in this paper. Let us introduce a unit vector
e, tangent to the displacement line at a given point, and the magnitude of the
vector V at point—|V|. The field V (r, z) can be put in the form V (r, z)=e,, (r, z)
||V (r, 2)|. The field e, (r, z) defines the pattern of displacement lines. It belongs
to the geometry of the apex. If we assume a certain |V| along one displacement
line, for instance along the axis, then for the given geometry the whole field Y2
is already defined. We shall assume different |V| along the axis and will calculate
the corresponding distribution of growth rates.

In the case of GPO, the field V (r, z) can be represented by a function of the
gradient of some scalar field G (r, z) such that on the axis

V(0,2)=V (z)=grad G (z,) while in general:

V(r,2)=u(r,2) grad G(r,z) (1)
and
lgrad G._,|*
p(r,z)= [_éfa__cl_(}: F (2

where grad G, ., is the gradient of G at point P (r, z) through which the displacement
line defined by the parameter c=a runs, and grad G,_, is the gradient of G on the
axis at intersection with the orthogonal trajectory which runs through point P
(Hejnowicz 1980). In this formulation the displacement lines are the field lines
of V while the orthogonal trajectories of displacement lines are the equipotential
lines of G (i.e. lines on the (rz) plane such that at each line G is constant).

2. Growth rates

The knowledge of the vectorical field of displacement velocity of elements is
of primary importance for analysis of growth patterns (Erickson, 1976; Hejnowicz,
1980).

The relative elemental rate of growth, RERG, of segment | oriented in the direct-
ion of the unit vector e, RERG, , is:

RERG! (s)=graq (y ' cq) ) ?s (3)

An organ which is a figure of revolution, grow without twisting, so that vectors
V lie in axial planes and the unit vector e, is either in axial or orthogonal to this
plane:
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vy ov,
RERG, = ~5p o8 at

cos*f+

av, av, v,
oz v oo * r oo @

+cosa cosf (
where cos a, cos B, cos y are direction cosines of e, in respects to the base unit vectors
€, €, €, respectively (on the condition that cos ¢ attains either value 0 or 1 as mentio-
ned previously). In particular:
1. along the pericline (along displacement line), cos a=sinp, y=90°, Fig 2a

A

[y
RERG'(FCT) =S

z

av, v, )

coszB+cosﬁsinB( 5> T .

Ve o
6r_sm B 0z ®)

where f is the angle between the displacement line and the z-axis;
2. along the anticline (along an orthogonal to the displacement lines), cosB=

= —sina, y=90°
o, v, ~[av, v,
RERG; (40, =5 sina +——cos’a—cosa sina + — ) (6)
iz ar . 0z cr
where « is the angle between the orthogonal trajectory and e;
. ov,
3. along the radius  RERG,, =—";l_ : (7)
r
: : av,
4. along the axis RERG,,, =- . (8)
CZ
vl’
5. along the latitude RERG =" —3 ©

The relative elemental rate of growth in area RERG, in the plane defined by
two orthogonal unit vectors e,, and e, at a given point is the sum of linear RERG,
in these directions:

RERG,=RERG; ;,+ RERG, .,

I'n particular:
1. in axial plane we take RERG, in the directions of e, and e,

v, av, (10
] = s o e
RERG& (axial) (F;I" (?z )
2. in transverse plane we take RERG, in the direction of e, and e
: v, V.
RERG, (iunsy= 5.~ F —— _ (11)

or r
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3. on the organ surface we take RERG, along the pericline (meridian) and along
the latitude

v,
RERGJ (tangent) __é; sin® B .~

av, ov, dv, Ve
+— cos?B+sinf cos Bl ——+ = + (12)

where B is the angle between the displacement line (meridian) and e,:

4. on the surface orthogonal to the displacement lines we take RERG, along
the anticline and along the latitude
T— v, av, , ( av, % FVZ) V,
R =, -~ cos’a +——sin*a—sinacosa|——+——|+— (13
e 0z 0z or r (12
where « is the angle between the orthogonal trajectory and e,.
The relative rate of growth in volume is the sum of linear rates in three ortho-
gonal directions al a given point

RERG,,,=RERG,, +RERG,, + RERG, (14)

It is convenient to take 1, 1., 1, parallel to base vectors. The right side of (14)
is the divergence of vector field V, thus RERG,,,=div V. This is valid for all ortho-
gonal coordinate systems because the operator div is an invariant. In cylindrical
coordinated, for a figure of revolution

oV, 1 8
RERGWF‘& + =% (r-Vy) (14a)

3. Temporal course of dome expansion

The definition of displacement velocity along the axis is |\e’|=“at . We can
thus write for the elements lying and being displaced along the axis: dz=[V (z)| dt
. dz
or, after separation of variables, ——— . =dt
d V(@)

H f g (15)

ence | 5 =t—t

V@ ’

This equation gives the displacement of any element located at z, at instant
t, during the time interval t —t, along the z-axis.To get the displacement for ele-
ments beyond the z-axis, an element should be displaced along its displacement
line from position P, at instant t, to the intersection with the orthogonal trajec-
tory on which is located at instant t the axial element which at instant t, lay on
the orthogonal trajectory passing through P,.
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4. Analytical approach to the model

Let us assume that the family of displacement lines is described by the equation
r=af(z), where a changes from zero on the z-axis to a,., on the organ surface.

dr  rf'(2)
The differential equation for the family is d?=_fa) and for the family of
) ) ] dr f(z)
orthogonal trajectories of the displacement lines -l rf’(5
The solution of this equation gives the equation for the trajectory which crosses
1 * f(2)
the axis at z,: 5 r’+F(z)-F(zy)=0  where F(z}=J F(z_) dz

With each point of the trajectory we associate the constant value of G defined by
G as a continuous function of z along the z-axis G=G (z,).

1
Thus G=7r2+F(z)+C(zo) (16)

On the axis we have F(z,)+C(z,)=G(z,)
hence C(z,)=G(z,)- F(z,) (17)

Since G (z,) is a monotonic function, there exists an inverse function to it, z, =z, (G).

Introducing this into (17) we obtain C as a function of G, C=C (G), which intro-

duced into (16) yields G as a function of r and z, G=G (r, z). Having G in analy-

tical form one can calculate the gradient of G and then V according to (1) at ecach

point of the dome. Components of the vector V in the r and z directions are: V,=
oG oG

_.V_
ar’ * oz

5. Graphical approach to the model

Having a pattern of displacement lines we can draw their orthogonal trajectories
creating in this way an'orthogonal net. Let us assume that we know the distribution
of linear RERG along the axis. Integrating it twice we obtain G (zp). Orthogonal
trajectories of displacement lines are equipotential lines of the scalar field G, thus
the value of G (z,) is valid for all points of the orthogonal trajectory which intersects
the axis at z,. Determination of the derivatives of V is thus reduced to determina-
tion of the surface G (r, z) and its differentiation, which can be done in two ways:

A. Numerical smoothing of the values G (r, z) given originally at the inter-
section of straight lines parallel and orthogonal to the z-axis with successive equi-
potential lines along the straight lines and numerical calculation of the second

e e PG

derivative: ———, ——, ——
or? 0z2 ’ oroz
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]

This method might be adapted for an electronic computer by using smoothing-
-differentiating formulas such as those described by Erickson (1965, 1976).

. B. Calculation of V (r, z) on the basis of geometry of the orthogonal net and
graph:cai differentiation of V. This method was used in the preparation of the
present paper, so it is described in detail. First we utilise the property of lgrad G|
which is inversely proportional to the distance between two equipotential lines G
and G+AG. From (1) and (2) we have thus

\ ( ) dGi(A )Am dGol=- 1y | 1
] |._. I e — = — " =

gra Rl | i lgrad G, i Vol (1b)
where Am, and Am, are the distances between neighbouring orthogonal trajectories
of displacement lines, embracing point P measured along the displacement lines
G

=, A the intersection of the equipotential
0z

line running through point P with the axis. The periclinal RERG; (between points
P, and P, lying on the same displacement line a) (Fig. 2 A) is:

a and the axis respectively, and V, is

1
RERG; (pery > (IVaz| = [Vai ) ' (18)

Fig. 2 Explanation to the calculation of linear growth rate:
A — in periclinal direction (along displacement lines); B — in anticlinal direction (along
orthogonal trajectory of displacement lines)., See text.

where [V,,| and |V,,| are the values of V at points P; and P, and Am, is the
distance between them. Applying (1b) we obtain

( Ama) o ( Am, ) 5
Ar}lu a2 J____U?,l - Amc In |_OI|

RF;{(II (per) (o4 Am
a

(19)
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where |Vo,|and |Vo.| concern the points z, and z, in Fig. 2A. The latter formula
allows to calculate RERG,,, if we know G along the axis and the distances Am.
m,

Often the formula for RERG; (y,) may be simplified. Let us expand [V,| and Am.

using the first order terms only: o

[ Am,
d|V,l - Am, ) [ Am, ' d( Arh(, )

IVoz1=1Voul A : —Am,
1Yo21=[Yo1l My and (Am m

. Ar-n0 dm,

&

dm,
Introducing this expansion into (19) we obtain

) o
G d| V| + Am, L+ Am,
RER T (per) = dmo dnl“ | ol d]_.n‘1 m,

()

Am, | i g

T s very small, thus the two last terms on the right side may
be neglected. RERG; (yer) is then the same for all points on the orthogonal trajec-

d|V,]
tory of displacement lines and is defined by d ="

Often

on the axis;
0

d[Vo|

RERG; (pery =~ o

(19a)

The relative elemental growth rate in the direction orthogonal to the displacement
lines in the axial plane RERG; (4n,) and in the plane orthogonal to the axial plane
RERG; (1) are defined by the increments of segments of the net in Fig. 2B expressed

y S,-5, 2m(ry—ry)
by the following formulas RERG 4nyy= _5,_At_ RERG, mt)=-~z—mlT
forsmall At Am,=V, At
Using (1b) we obtain
Ar
RERG, (am]:m IYO‘Q RERG, UMJ:I‘_AD-K |_Va| (20a.b)

The formulas may be treated as final ones. Then As and Ar must be determined
directly on the orthogonal net. However, As and Ar can be drawn in functional
form and differentiated graphically. Then the formulas take the form:

dlns ) Al
RERG,; (any=1Vol g’ RERG (o =IVol g~

RESULTS

We have assumed for calculations a pattern of displacement lines in the form
of a family of parabolas r*=az. The line specitied as a=0 is identical with the dome
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axis, the line a=a,,,, is its surface. The net of displacement lines and of their ortho-
gonal trajectories is given in Fig. 1. The calculations have been done by the two
methods. In the analytical one we use the equation of parabolas, in the graphical
one — the geometric relations observed in the net. Comparison of the results
obtained graphically with the rigorous results of analytical method allows to estimate,
whether the graphical method is suitable in studies of real domes. Analytical and
graphical methods are used with the same functions G (z,). Additionally we used
the graphical method for a case in which the growth rate on the axis was defined
graphically in a form which could not be described analytically.

1. Analytical approach

For parabolic displacement lines, r?=az, the equation of their orthogonal
dr 2z

1
trajectories is; $= - By integrating we obtain 5

1
ding to (16) the field G is G= > r2+22+C(z,).

r?+2?—z3=0 and accor-

Variant 1—The relative elemental growth rate along the axis is constant

1
RERG, (,,,=c thus G(zo)=?cz§. For simplicity we adopt a time unit such
that c=1. Now G(z0)=l z; and 2o=V2G . C (G)=G-2G=-G, therefore
N P S 22 L 2244z
G= st Using (2) we obtain p= e
p becomes unity on the axis (when r=0) except the very tip where it tends to

. One can prove easily that

attain the value 2. (Na.mely, introducing to the equation the relation r’=az we have

22 +4z2 Qatdz )
o AR avaz

This means that the factor p introduces some mathematical pecularities to the
field V near the tip, and the values calculated as limits of functions of this field,

when z approaches 0 may be unrealistic.

13 4 2rz? 4 57 2r2z+472°

e———id V.
% +4z2 r? +4z?

functions of the angle between the displacement line and the unit vector €, are:

2z r
COS B= —— Sin B= B e
Vr2+4z* Vr1?+4z2
Using the formulas (5—14) for growth rates we obtain:

The components of the vector V are: V.= The

21-2 ZZ ]
(r2+4z%)?
r+—8z*

+_ = S
l (r? +4z2%)?

RERG; (yer,=1—

RERG; (430 =
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r?+2z%
RERGiaa™ 2%
r*+10r2z% 4+ 8z*
4(r“+5rzz +8z%)
RERGw = —capgui

|
|

"
]
]
'
]
1
'
'
i
1

B. A c

Fig. 3. Distribution of growth rates — linear and in area — obtained by analytical method for
variant 1 characterized by constant linear growth rate along the axis

The linear growth rate in each direction at a certaln point on a particular plane is

given by the ellipse (circle) radius running from the point in this direction. The growth

rate in area is proportional to ellipse surface area: A — in axial plane, at nodes of the

net shown in Fig. 1; B — in transverse planes at the levels indicated by arrows; C —
on the surface of the apical dome at the levels indicated by dashed lines

The results of calculations are summarized in Fig. 3. It is seen that the linear
growth on the surface is nearly isotropic, i.e. the growth rate does not depend on
the direction, However, it is not isogonic—there are slight changes in the rate as
the distance from the tip increases. The growth in the axial plane is distinctly aniso-
tropic in the central part but becomes almost isotropic in the peripheral part. Near
the tip, at the periphery there is a higher growth rate in anticlinal than in periclinal
direction. This anisotropy is connected to mathematical pecularities of the para-
bolic displacement lines (the course of the latter near the tip differs widely from
that of the straight lines radiating from tip which can be expected in isotropic growth
of tip region). Growth on the transverse plane is nearly isotropic, but not isogonic.
The surface area of one half or one quarter of the ellipse (or circle) in Fig. 3
characterizes the surface growth rate in area in the indicated plane. Obviously,
the deformation of the ellipse in relation to the circle characterizes the aniso-
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tropy of growth. There is, in general a higher growth rate in the area at the
periphery, especially in the apical part.

The distribution of the volume growth rate for the considered variation of growth
is shown in Fig. 5A. This variant is characterized by a relatively lower volume growth
rate in the core of the dome.

Fig. 4 Distribution or growth rate — linear and in area — obtained by analitical method for
variant 2 characterized by growth rate along the axis, proportional to the distance from the tip:
A —in axial plane; B —in transverse planes; C — on the surface of the apical dome. See Fig. 3

Variant 2—The relative elemental growth rate along the z-axis is proportional
to the distance from the tip

RERG, ,,,=cz. Adopting the time unit so that c=1 we have G(zo)=? 75 s

1 1 3!2'
and C=G(z,)—2z¢=G—(6G)*/*. From (16) we obtain G=—6—(—2—r2+zz)

The components of the gradients of G are

G 1 (1 : 2)”1 G 1 (1 i 2)”2
or 4T\20¥F) » FTREIQT Yt

The factor p is the same as in the previous variant (obviously it can be calculated
separately for this variant). The components of vector V are thus:

1 \V3/2 l . 3/2
r(-2 r2+zz) 22(5-r2+zz)

S
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Fig. 5. Distribution of rates of growth in volume. The rates are indicated for the nodes of the net
shown in Fig. 1. A and B — obtained by analytical method for variant 1 and 2, respectively,
C and D — obtained by graphical method for variant 1 and 2, respectively

The direction cosines of the displacement line are also the same as in the previous
case. Using formulas (5—14) for growth rates we obtain:

1/2
_2 rZ _l_ZZ
RERG; (pény = -—(1.2—;:-4}--2}7—- (r®+ 11r* z2 +44r2 z* 4 64z°)
1 1/2
(? r¥4z2 :
RERG, (ant) — Wr“ (r®+8r*z%4+20r2 z* + 16z°)
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1 )3;’2
2 2
r“+z
2

RERGI (lat) = __?51422

Y1f2
= r2+Z2
2

RERG,; (149)=" (r*+7r? 2% +4z%)

(r* +4z2)?

1 1)z
22
(2 ki ) 5
zm“ —r*4 14r2 z2 + 24z

RERG,,, >

The results of calculations are summarized in Figs 4 and 5 B. As could be expected,
there is a marked increase of relative elemental growth rates of all kinds with the
distance from the tip. At the very tip the rates are zero. The linear rate on the surface
near the tip is generally low, but nearly twice faster in the meridional than in the
latitudinal direction. This anisotropy is due to the fact that there is a fast change
of meridional growth rate with distance from the tip, while latitudinal growth rate
changes slower (the latter depends rather on the velocity of displacement of the
latitudinal circle along which it is measured than on the local meridional growth
rate). The anisotropy of growth on the dome surface becomes more pronounced
as the distance from the tip increases. In the axial plane the anisotropy is more
pronounced in the core than at the periphery. It is worth to noting that the peri-
clinal growth rate is nearly the same for all points of an orthogonal trajectory of
displacement lines, this proving the validity of formula (19a). However, the peri-
clinal growth rate at the same level, i.e. at the same z, increases with the distance
from the axis. On the transverse plane the growth rate in latitudinal direction is
slightly higher than in the radial direction. Both rates increase with the distance
from the axis and from the tip. Growth rates in area higher at the periphery of the
dome than in its core for all planes. The same is observed for growth in volume,
Fig. 5B.

2. Graphical approach

We have elaborated by the graphical method the same variants of growth as
previously described analytically, using the same units. The results obtained are
practically the same as those from the analytical procedure. To illustrate the simila-
rity, the results for volume growth rate are shown in Fig. 5C, D. Our conclusion
from the comparison of analytical and graphical results is that the graphical method
is good enough to be used in practice. This is important because in practice we shall
not have the geometry of a dome and of G (z,) in analytical form. By using the
graphical method we have made calculations for variant 3 in which the growth
rate along the axis and corresponding V (z,) are shown in Fig. 6A. The aim was
to see the pattern of growth rate in a case more realistic than in the previous variants.
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Fig. 6 Distribution of growth rates — linear and in area — obtained by graphical method for
variant 3 characterized by growth rate along the axis as shown in A. B — in axial plane, C — on
the surface of the apical dome. See Fig. 3
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Fig. 7 Distribution of rates of growth in volume for variant 3

The results are summarized in Fig. 6B, C and 7. There is nearly isotropic growth
n the upper part of the dome similarly as in variant 1 (in the region where the
ssumed growth rate along the axis is constant). Growth in the basal part is strongly
nisotropic, even more than in variant 2, which is obviously due to a very rapid
ncrease of growth along the z-axis in region B, Fig. 6A. Very interesting is the
distribution of volume growth rate, namely, this rate is generally low in the summital
part, but there is a clear depression of the rate in the core of this part.
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3. Temporal expansion of the dome

The relation between the position of a material element on the axis and the

Z 2 2
time, defined by equation (15) is t—tu=ln-;—and t—t0=“2—'——z— for variant 1
and 2, respectively. 9 0
]
T ~\
T /N
et
£ B
: ':‘ + .;\?-P\

Fig. 8. Deformation of a net which originally was quadratic as shown in A. B —for variant 1
(linear growth rate along the axis constant), C — for variant 2 (linear growth rate along the axis
increases proportionally to the distance from the tip). To facilitate comparison one mesh is deli-
neated by heavy line. The time interval between states A and B is different from that between Aand C

Fig. 8 illustrates the deformation of a net which originally was quadratic. In
variant 1 the net is deformed so that the lines which were originally parallel to the
axis tend to diverage in respect to the tip, while in variant 2 there is a tendency to
convergence. It should be noted that in both variants the horizontal lines become
convex towards the tip, i.e. the dome grows so that each transverse plane in it tends
to protrude toward the tip. In variant 2 the net is as if almost attached close to the
tip and drawn along the displacement lines downwards.

Fig. 9 shows deformation of the cell wall net on the axial plane. The net looks
originally as in Fig. 9A, while after some time of growth—as in Fig. 9B and 9C in the
two variants, respectively. One can imagine that, when the mesh of the net increases
it becomes partitioned so as to keep the average size constant. In variant 1 th,
partitions will be oriented as often anticlinally as periclinally, while in variant 2 there
ts a high prevalence of anticlinal partitions. Thus, in variant 1 there is a tendence
0 a massive type of cell arrangement, while in variant 2—to a rib type.
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Fig. 9 Deformation of a cell wall net in axial plane

A — original state, B — for variant 1 (linear growth rate along the axis constant), C —
for wariant 2 (linear growth rate along the axis increases proportionally to distance
from the tip). One “cell” is marked by heavy line to facilitate comparison ’

DISCUSSION

This paper shows how the distribution of growth rates can be evaluated in the
apical dome if data on the geometry of the dome including the pattern of displa-
cement lines and linear growth rates along one longitudinal direction are available.
The geometry of the dome, its shape and behavior in time can be obtained from
anatomical studies. From the latter we can also infer the pattern of displacement
lines (Schiiepp, 1966). The data on the linear growth rate along the meridional
line on the surface may be obtained from direct measurements of displacement
velocity of elements on the dome surface, though such measurements have not
been reported in the literature. They may also be inferred from determination of
the sizes of cell complexes in a stationarily growing apex or from the distribution
of the mitotic index.

In the literature a lot of partial data can be found pertinent to the problem of
the growth pattern in shoot apical meristems, but they are only used in estimating
some aspects of this pattern. A most complete survey of these data was done by
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Schiiepp (1966). However, there is no paper in which these data are utilised to give
a complete picture of the growth pattern in a shoot apex. In the present paper such
a complete picture is offered, but only for a model of a shoot apex. We believe,
however, that this method may be used for a real dome. Our preliminary trials indi-
cate that the method may be extended to cases where the shape of the dome is not
stationary owing to the crossing of the dome surface by displacement lines, or even
to a temporary change of the pattern of displacement lines.

The general picture of the growth of a shoot apex constructed from the literature
(Lyndon, 1976) roughly fits within the range of variants 1 and 2 considered in this
paper. Variant 3 seems to be the most realistic in the case of the corpus of the shoot
apex in seed plants. If this is the case, the low rate of growth in the subapical part
and the depression of the growth rate in the core of this part deserve attention.
Such a pattern of growth may be related to the cytohistological zonation in the
apices of seed plants. Especially the zone of central mother cells in shoot apices
of gymnosperms and in many dicotyledonous plants seems to be related to the
subapical depression of growth rate.

The pattern of displacement lines in many real apices probably differs in details
from the parabolic ones assumed in this paper. In apices which have a tunica- -corpus
organization the displacement lines within the tunica run parallel to the dome sur-
face (the anticlinal growth rate is null within the tunica) and only those in the corpus
converge to one point (Schiiepp, 1966). The partern of displacement lines assumed
in this paper obviously does not fit the presence of a tunica. In the case of an apex
with tunica-corpus organization, this pattern refers to the corpus alone. In such
a case, however, we can estimate the growth rate in the tunica; the volume growth
rate of the tunica must be equal that of the area growth rate on the corpus surface
(RERG; (4n,=0 in tunica). This means that the organization tunica-corpus depresses
the rate of volume growth in the apical part of dome containing the cells of the
“germ line”. Our modeling allows to estimate that this rate is lowered to half of that
which would occur without tunica-corpus organization.

The senior author has put forward the hypothesis (Hejnowicz, 1980 b) that
the organization and growth pattern of shoot apex protects the cells on the “germ
line” from errors appearing during DNA replication in vegetative development
and which are more probable in cells occurring on the apex surface than in those
located inside. This protection is achieved by: 1. lowering the rate of growth in the
apical region of the shoot apex during the vegative phase of development; 2. positio-
ning of the “germ line” under the surface cells, this being posible owing to the
tunica-corpus organization. The two-layered tunica in which the second layer belongs
to the “germ line” serves not only the 2-nd point, but also additionally lowers the
frequency of divisions of its cells.

The parabolic lines in the corpus itself probably differ from parabolic ones.
Judging by the arrangement of cells, it seems that the displacement lines in the
axial part of the corpus run almost parallel to the axis already on the level of the
mother cell zone. This means that the radial (anticlinal) growth rate close to the
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axis is lower than in our models, and thus, on a compensatory basis, the radial
(anticlinal) growth rate in the peripheral parts is higher. If this is the case, the slight
depression of growth rate in the core of the subapical part, occurring in variant 3
would be more pronounced.

The knowledge of the growth rate distribution in the shoot dome is important
in many aspects. One is the ontogenic drift of cells and of the populations which
develop from them. The drift—the relation between cell position and time—may
be calculated if the distribution of growth rate is known. An other aspect is the
morphogenesis of the apex. The growth rate distribution is the basis for morpho-
genesis. A very important aspect is the distribution of rate of different processes
occurring in the apex. To calculate this distribution we need the field of velocity
of cell displacement besides the spatial variation of the quantity studied (Silk and
Erickson, 1978, 1979).
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Modelowanie wzrostu wierzcholka pedu

Streszczenie

Podczas wzrostu wierzchotka elementy siatki $cian komoérkowych przesuwaja si¢ z okreslonymi
pla danej czgsci predkosciami. Istnieje wige pole wektorowe predkosci przesunigé V. Matematycz-
dna aaliza tego pola pozwala znaleZé rozmieszczenie szybkosci wzrostu (RERG): odcinka linii w
downlnym kierunku, elementu powierzchni na dowolnym przekroju, elementu objetosci w réznych
ounktach wierzchotka. W niniejszej pracy pokazujemy, jak mozna to zrobi¢ w oparciu o znajomosé
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geometrii wierzcholka i szybkosci wzrostu liniowego wzdiuz jednej z linii przesunigé a mianowicie
wzdhuz osi. Zarowno geometri¢ (ksztalt wierzcholka i wzor linii przesunieé), jak i szybkosé wzrostu
liniowego wzdluz osi mozna wyznaczy¢ empirycznie. Rozpatrujemy kilka mozliwych wariantow
szybkosci wzrostu liniowego na osi (RERG, ,):

1. gdy RERG, (4, jest stale na osi

2. gdy RERG; (4, iest proporcjonalne do odleglosci od szczytu

3. gdy RERG; ;) jest zadana graficznie kombinacja dwoch poprzednich wariantow. Obliczenia
przeprowadzilismy dla wierzcholka o ksztalcie paraboloidy obrotowej z parabolicznymi liniami
przesunig¢ dwoma metodami: analityczna — oparta na rownaniach parabol, i graficzng — wyko-
rzystujaca jedynie zaleznosci wynikajace z rysunku. Dla obu metod uzyskaliémy niemal jednakowe
rezultaty, wykazujac tym samym przydatnos¢ metody graficznej. Rezultaty obliczen uzyskane
dla wariantu 3 sg zbiezne z wynikami badan empirycznych wierzchotkéw pedu roslin nasiennych
z charakterystyczng dla nich malg szybko$cia wzrostu w czgsci przyszczytowej oraz depresjq szyb-
kosci wzrostu objetosciowego wewnatrz tej czesci. Wyliczylismy rowniez czasowy przebieg ekspansji
siatki $cian komorkowych.
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