Współdziałanie wolnych auksyn z kwasem askorbinowym i glutationem w procesie kiełkowania ziarn pszenicy

Cz. II. Wpływ kwasu 3-indolilooctowego, kwasu askorbinowego i glutationu na poziom tych związków w kiełkującym ziarnie

Interaction of free auxins with ascorbic acid and glutathione in the process of wheat grains germination

Part II. Influence of the 3-indolylacetic acid, ascorbic acid and glutathione on the content of these compounds in the germinating grains

II. SKRABKA

Wpływ fiziologicznie aktywnych związków egzogennych na poziom związków endogennych był wielokrotnie badany (Crocker i Barton (1953), Gu kowa i Faustow (1961), Michniewicz i Stanisławski (1962), Mayer i Poljakoff-Mayber (1963)).

W 1939 roku Sugas wara stwierdził, że stężenie kwasu askorbinowego w kiełkujących nasionach ryżu zwiększało się przez traktowanie syntetycznymi substancjami wzrostowymi. Sreenivasan i W andre kar (1950) stwierdzili dodatni wpływ moczenia nasion przed kiełkowaniem w roztworach cytrynianu, bursztynianu, fumaranu i jabłkana oraz tiaminy, ryboflawiny, kwasu nikotynowego i biotyny na powstawanie kwasu askorbinowego. Również niektóre aminokwasy, np. trypto fan, przyspieszały tworzenie się kwasu askorbinowego. Newcomb (1951) wykazał, że kwas 3-indolilooctowy w stężeniu 3,5 mg/l powoduje silny wzrost aktywności oksydazy askorbinowej w komórkach rdzenia tytoniu hodowanego sztucznie. Twierdził on, że oksydaza kwasu askorbinowego jest powiązana ze wzrostem komórki, a jej syntezę czy aktywność jest kontrolowana głównie przez auksynę. Scheuermann (1952) wykazała, że utworzone pod wpływem kwasu 3-indolilooctowego związki korzeni, rozwijają się w normalne korzenie u etiologowanych sadzonek fasoli, o ile podziała się na nie kwasem askorbinowym. Badała ona również działanie kwasu askorbinowego na wzrost koleoptyle owsa. Sam kwas askorbinowy działał słabo, natomiast w różnych kombinacjach z kwasem 3-indolilooctowym powodował jego intensywniejszy wzrost. Michniewicz (1960) wykazał, że w ziarnach pszenicy moczonych
w kwasie 3-indoliloocтовym zwiększa się znacznie zawartość kwasu askorbinowego w czasie kiełkowania.

Ale dane te z reguły dotyczą zawartości czy aktywności poszczególnych związków w nasionach o normalnej żywotności lub kiełkowanych w warunkach normalnych. W dotychczasowej literaturze brak jest bliższych danych dotyczących wpływu egzogennych związków na poziom lub aktywność endogennych w nasionach o zróżnicowanej żywotności i kiełkowanych w różnych warunkach.

Celem niniejszej pracy było zbadanie wpływu egzogennych związków: kwasu 3-indoliloocowego, kwasu askorbinowego i glutatjionu na poziom tych samych związków endogennych w ziarnach o słabej żywotności oraz w ziarnach kiełkowanych w warunkach beztlennowych.

Dokładny opis materiału oraz metod, którymi się posłużyło w tej pracy został zamieszczony w części I (Skrabka 1964).

**BADANIA WŁASNE**

Wolne auksyyny

Badano zawartość wolnych auksyn w kiełkujących ziarnach pszenicy traktowanych kwasem askorbinowym i glutatjionem.

Doświadczenia przeprowadzono na materiale o zróżnicowanej żywotności:

a) ziarna o normalnej żywotności kiełkowane w warunkach tlenowych,

b) ziarna o normalnej żywotności kiełkowane w warunkach beztlennowych,

c) ziarna o obniżonej żywotności kiełkowane w warunkach tlenowych.

Bliższe dane dotyczące materiału i metod oznaczania wolnych auksyn przedstawione są w części I (Skrabka 1964).

Odważoną próbkę ziarn pszenicy wyjaławiano powierzchniowo i po wypłukaniu wodą destylowaną moczono w odpowiednich roztworach przez 24 godziny w zlewakach 100 ml. Moczenie ziarn odbywało się w termostacie o temperaturze 22°C, w ciemności. Po 24 godzinach ziarna przepłukiwano wodą i wykładano do kluwet porcelanowych na bibułę. Kiełkowanie prowadzono w tych samych warunkach jak moczenie. Ziarna kiełkowane w warunkach beztlennowych (b) wkładano po przepłukianiu do zlewek 100 ml wypełnionych wodą wodociągową świeżo przegotowaną i ostudzoną. Powierzchnię wody pokrywano kilkumilimetrową warstwą oleju parafinowego. Ziarna o obniżonej żywotności (c) należały do tej samej odmiany ("Komorowskiana") co ziarna zwane normalnymi (a), ale posiadały bardzo niską siłę kiełkowania wynoszącą około 15%. Pochodziły one ze zbioru 1953 roku. Czas kiełkowania liczono od chwili...
namięcenia ziarn w odpowiednich roztworach. W doświadczeniach wstępnych doświadczono odpowiednie stężenie roztworów. Kwas askorbinowy i glutatjion, wchodzące w skład mieszaniny, zastosowano w takim samym stężeniu jak przy roztworach pojedynczych. Wykilekowane ziarna rozcieńczono w moździerzu, a następnie ekstrahowano wolne auksyny mózgowe etanolem i przenoszono do kostek agarowych. Stosowano test owisany Wenta w modyfikacji Funkego. Zawartość wolnych auksyn w ziarnach badano w 2, 3, 4 i 5 dniu kielkowania. Miara zawartości była kąt wychylenia wyrażony w stopniach.

 Wyniki, które są średnimi z 6 powtórzeń, przedstawiono na ryc. 1 A, B, C osobno dla każdego rodzaju ziarna. Również analizę zmienności przeprowadzono oddzielnie dla każdego rodzaju ziarn.

Przeprowadzona analiza zmienności dla ziarn normalnie kielkowanych (a) wykazała istotne różnice w działaniu roztworów na poziom auksyn. Analiza ta nie wykazała natomiast istotnych różnic wpływów czasu na kielkowanie i współdziałania czasu kielkowania z roztworami.

Z wykresu na ryc. 1 A widać wyraźnie wzrost zawartości wolnych auksyn w ziarnach moczonych w mieszaninie glutatjionu z kwasem askorbinowym. Ilość auksyn w ziarnach moczonych oddzielnie w roztworze glutatjionu i oddzielnie w roztworze kwasu askorbinowego nie różniła się istotnie od kontroli.

Analiza zmienności dla ziarn kielkowanych beztlenowo (b) wykazała istotne różnice dla wpływów roztworów na zawartość wolnych auksyn. Różnice dla czasu kielkowania i współdziałania okazały się niestatystyczne. Zawartość wolnych auksyn w ziarnach pszenicy traktowanych mieszaniną kwasu askorbinowego i glutatjionu, a kielkowanych beztlenowo, (ryc. 1B) była wyraźnie większa w porównaniu z kontrolą oraz z wariantami, w których działoły tymi związkami oddzielnie. Nie stwierdzono wpływu czasu kielkowania na zawartość wolnych auksyn.

Podobnie przedstawiają się wyniki dotyczące ziarn o osłabionej żywości (c). Najwyższą zawartość wolnych auksyn wykryto w ziarnach moczonych w mieszaninie kwasu askorbinowego i glutatjionu, szczególnie w początkowym okresie kielkowania (2—3 dzień). Później różnice zmniejszyły się. Różnice we wpływach pozostałych roztworów (kwas askorbinowy i glutatjion stosowane oddzielnie) na zawartość wolnych auksyn były nieznaczne i statystycznie nieudowodnione.

Kwas askorbinowy

Badano zawartość kwasu askorbinowego w kielkujących ziarnach pszenicy traktowanych kwasem 3-indoliloctowym, kwasem askorbinowym, glutatjionem i siarczanem miedzi w różnych kombinacjach. Użyto tego samego materiału i przeprowadzono kielkowanie podobnie jak przy znamczaniu wolnych auksyn.
Ryc. 1. Zmiany zawartości wolnych auksyn w kiełkujących ziarnach pszenicy moczonych w 0,01% roztworze kwasu askorbionowego i 0,001% roztworze glutatjonu: A — w normalnie kiełkujących; B — kiełkowanych bezzielenowo; C — w ziarnach o osłabionej żywości.

1 — glutatjon; 2 — kwas askorbinowy; 3 — mieszanina kwasu askorbinowego i glutatjonu; 4 — woda.

Changes in free auxins content in germinating wheat grains soaked in 0.01% ascorbic acid solution and 0.001% glutathione solution: A — in normally germinated grains; B — in anaerobically germinating grains; C — in grains with reduced viability.

1 — glutathione; 2 — ascorbic acid; 3 — mixture of ascorbic acid and glutathione; 4 — water.
Kwas askorbinowy oznaczano metodą Pijanowskiego, stosując 6% kwas metafosforowy dla stabilizacji oraz jako wskaźnik — 2,6-dwuchlo- rofenoloindofenol. Zawartość kwasu askorbinowego badano w 2, 3, 4 i 5 dniu kielkowania. Ponieważ ta zawartość rosła proporcjonalnie do czasu kielkowania i różnice w zawartości kwasu askorbinowego pomiędzy ziarnami traktowanymi poszczególnymi związkami były jednakowe w każdym dniu, na wykresie przedstawiono wyniki tylko z 5 dnia kielkowania. W doświadczeniach wstępnych ustalono stężenie i kombinacje poszczególnych roztworów, a ponieważ wyniki były zachęcające do dalszych badań, w doświadczeniach właściwych zastosowano większą ilość kombinacji. Wszystkie roztwory sporządzano na wodzie dwu razy destylowanej w szkle. Do każdego doświadczenia sporządzano zawsze świeże roztwory. Dla roztworów wielokładnikowych sporządzano roztwory po-jedynczych związków bardziej stężone, a następnie odpowiednio je rozcieńczano tak, że wszystkie roztwory były o jednakowym stężeniu danego związku.

Wyniki, które są średnimi z 5 powtórzeń, przedstawiono na ryc. 2A i B osobno dla ziarn normalnych (a) i osobno dla ziarn o słabej żywości (c). Dla ziarn kielkowanych beztlenowo (b) nie przedstawiono wykresu, ponieważ w żadnym wariancie tego doświadczenia nie wykryto (przy po-

Ryc. 2. Zawartość kwasu askorbinowego (w % mg) w 5 dniu kielkowania ziarn pszenicy w zależności od rodzaju roztworu, w którym ziarna były moczone. A — w ziarnach normalnie kielkujących; B — w ziarnach o osłabionej żywości

1 — kwas 3-indolilooctowy; 2 — glutatonia; 3 — kwas askorbinowy; 4 — siarczan miedzi; 5 — glutatonia + kwas askorbinowy; 6 — kwas 3-indolilooctowy + glutatonia; 7 — kwas 3-indolilooctowy + kwas askorbinowy + glutatonia; 8 — kwas 3-indolilooctowy + kwas askorbinowy + glutatonia + siarczan miedzi; 9 — woda

Ascorbic acid content (mg %) on 5th day of germination of wheat grains in dependence on the kind of solution in which the grains were soaked: A — in normally germinating grains; B — in grains with reduced viability.

1 — 3-indolylacetice acid; 2 — glutathione; 3 — ascorbic acid; 4 — copper sulphate; 5 — glutathione + ascorbic acid; 6 — 3-indolylacetice acid + glutathione; 7 — 3-indolylacetice acid + ascorbic acid + glutathione; 8 — 3-indolylacetice acid + ascorbic acid + glutathione + copper sulphate; 9 — water.
mocy stosowanej metody) kwasu askorbinowego. Analiza zmienności, którą sporządzono osobno dla obu rodzajów nasion, wykazała istotne różnice we wpływie czasu kiełkowania, stosowanych roztworów, jak również współdziałania obu tych czynników na zawartość kwasu askorbinowego w obu doświadczeniach.

W ziarnach normalnych (a) stwierdzono pewien wzrost zawartości kwasu askorbinowego (w stosunku do kontroli) w ziarnach moczonych w roztworze kwasu 3-indoliloocztowego (ryc. 2A, poz. 1) glutationu (poz. 2) i w roztworze zawierającym mieszaninę wszystkich czterech składników razem (poz. 8). Nieznaczny wzrost zawartości kwasu askorbinowego stwierdzono w ziarnach moczonych w roztworze będącym mieszaniną kwasu askorbinowego z glutationem i kwasem 3-indoliloocztowym (poz. 7).

U wszystkich ziarn normalnych (a) i ziarn o osłabionej żywości (c), bez względu na rodzaj roztworu, stwierdzono wzrost zawartości kwasu askorbinowego z upływem czasu kiełkowania (od 2 do 5 dnia).

Ogólna ilość kwasu askorbinowego w ziarnach pszenicy o osłabionej żywości (ryc. 2B) wynosiła kilkanaście procent w stosunku do ziarn o normalnej żywości we wszystkich kombinacjach i była proporcjonalna do procentu kiełkujących ziarn.

Przyrost ilości kwasu askorbinowego w stosunku do kontroli w zależności od moczzenia w poszczególnych roztworach był podobny jak w ziarnach normalnych (ryc. 2A i 2B). I tu również stwierdzono pewien, choć w ilościach bezwzględnych bardzo niewielki, wzrost kwasu askorbinowego w ziarnach moczonych w roztworze glutationu (ryc. 2B, poz. 2), w mieszaninie wszystkich czterech składników razem (poz. 8), w mieszaninie kwasu 3-indoliloocztowego, kwasu askorbinowego i glutationu (poz. 7) oraz w roztworze kwasu 3-indoliloocztowego (poz. 1).

Glutation

Badano zawartość glutationu zredukowanego w kiełkujących ziarnach pszenicy o zróżnicowanej żywości, traktowanych kwasem askorbinowym i kwasem 3-indoliloocztowym.

Zastosowano ten sam materiał i podobnie jak w poprzednich doświadczeniach przeprowadzono kiełkowanie. W doświadczeniach wstępnych przeprowadzono badania nad obecnością glutationu utlenionego w ziarnach traktowanych wyżej wymienionymi związkami. W żadnym rodzaju badanych ziarn (od 2 do 5 dnia) nie wykryto glutationu utlenionego.

Oznaczanie glutationu utlenionego przeprowadzono metodą chromatograficzną, zaś zredukowanego metodą manometryczną według Woodwarda.
Wolne auksyny i kwas askorbinowy w procesie kielkowania

Ryc. 3. Zmiany zawartości glutatjonu zredukowanego (w μg na 1 g suchej masy) w kielkujących ziarnach pszenicy moczonych w 0,019% roztworze kwasu askorbinowego i 0,005% roztworze kwasu 3-indoliloctowego. A — w ziarnach kielkowanych normalnie; B — kielkowanych beztlenowo; C — w ziarnach o osłabionej żywotności.

1 — kwas askorbinowy; 2 — kwas indoliloctowy; 3 — mieszanina kwasu askorbinowego i glutatjonu; 4 — woda

Changes in reduced glutathione content (μg/g dry weight) of germinating wheat grains soaked in 0.019% ascorbic acid solution and 0.005% 3-indolylacetic acid solution: A — in grains germinating normally; B — in grains germinating anaerobically; C — in grains with reduced viability.

1 — ascorbic acid; 2 — 3-indolylacetic acid; 3 — mixture of ascorbic acid and 3-indolylacetic acid; 4 — water.

Wyniki, które są średnimi z 5 powtórzeń, przedstawiono w postaci wykresów na ryc. 3A dla ziarn normalnych, na ryc. 3B dla ziarn kielkowanych beztlenowo i na ryc. 3C dla ziarn o osłabionej żywotności.

Analiza zmiennosci przeprowadzona dla ziarn normalnych (a) wyka-
zała istotne różnice we wpływie roztworów, czasu kiełkowania, jak równieży we współdziałaniu obu czynników na zawartość glutatjonu zredukowanego. W ziarnach normalnych (a) traktowanych kwasem askorbino-wym stwierdzono wzrost zawartości glutatjonu w stosunku do kontroli, większy w pierwszym okresie kiełkowania (3 dzień), a nieco mniejszy w późniejszym (5 dzień). Również w ziarnach traktowanych mieszanną kwasu askorbiniowego i kwasu 3-indolilooctowego stwierdzono pewien wzrost ilości glutatjonu, w stosunku do kontroli. W tym wypadku widać, że kwas 3-indolilooctowy obniża stymulujący wpływ kwasu askorbino-wego na poziom glutatjonu. Traktowanie ziarn samym kwasem 3-indoli-looctowym nie wpływało w sposób istotny na poziom glutatjonu. We wszystkich ziarnach (niezależnie od rodzaju roztworu, w jakim były moczone) stwierdzono wzrost ogólnej ilości glutatjonu z upływem czasu kiełkowania.

Analiza zmienności przeprowadzona dla ziarn kiełkowanych w warunkach beztlenowych (b) wykazała różnice istotne dla działania roztworów i dla współdziałania roztworów z czasem, a nie istotne dla działania czasu na poziom glutatjonu. A więc zmiany w zawartości glutatjonu, zresztą niewielkie, były zależne od rodzaju roztworu, w jakim ziarno moczone, zaś nie zależało od czasu kiełkowania. Ogólna ilość glutatjonu w ziarnach kiełkowanych beztlenowo, a moczonych w poszczególnych roztworach, nie ulegała większym wahaniom z upływem czasu kiełkowania.

Analiza zmienności przeprowadzona dla ziarn o osłabionej żywot-ności (c) wykazała różnice istotne dla działania roztworów i czasu kieł-kowania, a nieistotne dla współdziałania roztworów z czasem kiełkowa-nia. Ogólna ilość glutatjonu była niższa o 30—50% w stosunku do ilości obecnej w ziarnach normalnych (a), ale wpływ poszczególnych roztwo-rów był podobny. I tu najbardziej działał kwas askorbiniowy, natomiast kwas 3-indolilooctowy nie wpływał w sposób istotny na poziom glu-tatjonu.

**DYSKUSJA**

W pierwszej części pracy (Skrabka 1964) zbadano dynamikę wol-nych auksyn, kwasu askorbiniowego i glutatjonu w kiełkujących ziarnach pszenicy o zróżnicowanej żywotności. W drugiej części zastosowano ten sam materiał, te same metody i ten sam sposób kiełkowania, aby wyniki były porównywalne.

Rozpatrując wpływ kwasu askorbiniowego i glutatjonu na zawartość auksyn można stwierdzić zjawisko korzystnego łącznego działania tych związków. Roztwory tych związków stosowane oddzielnie nie dają podobnego efektu. Zjawisko to występuje we wszystkich trzech rodzajach
ziarn, a więc prawdopodobnie efekt jest niezależny od tlenu i czynników ograniczających kielkowanie w ziarnach o osłabionej żywotności. Można by przypuszczać, że kwas askorbinowy i glutation wpływają na syntezę lub tylko uwalnianie (aktywację) z kompleksu białkowego auksyn, ewentualnie na inaktywację enzymów rozkładających auksyny. Nie jest wykluczone, że w poszczególnych kombinacjach działanie to jest różne.

Wpływ moczenia nasion w roztworach różnych substancji na zawartość kwasu askorbinowego był wielokrotnie badany (Sreenivasan i Wadrecki 1950; Michniewicz 1960). W większości prac uzyskano wyniki dodatniego działania między innymi i kwasu 3-indolilooctowego na poziom kwasu askorbinowego. Również w tej pracy wyniki te potwierdzają się. Ciekawie przedstawiają się wyniki z moczeniem w kwasie askorbinowym, w tym wypadku nie uzyskano żadnej zwyki kwasu askorbinowego. Prawdopodobnie kwas askorbinowy pobrany na początku kielkowania został zużyty lub przetworzony. Zrozumiałe jest, że nie stwierdzono zwyki kwasu askorbinowego w ziarnach moczonych w CuSO₄. Chodzi tu prawdopodobnie o aktywację oksydazy askorbinowej, w skład której wchodzą jony miedzi i tym samym zostaje przyspieszone utlenianie kwasu askorbinowego.

Trudniejszym problemem jest wytłumaczenie zwyki kwasu askorbinowego w ziarnach moczonych we wszystkich czterech preparatach. Kwas 3-indolilooctowy w roztworze pojedynczym działa korzystnie na poziom kwasu askorbinowego. Podobnie przedstawia się sprawa z glutationem. Ale oba związki razem działają słabiej. Natomiast, gdy do tych związków dodamy jeszcze kwas askorbinowy i CuSO₄ działanie jest równie dobre, jak przy pojedynczych roztworach.

Przy doborze składników, jak już wspomniano w pierwszej części, kierowano się faktem, że kwas askorbinowy, glutation i oksydaza kwasu askorbinowego (CuSO₄) tworzą pewien układ przenoszenia elektronów. Znając wpływ kwasu askorbinowego na kwas 3-indolilooctowy można było przypuszczać, że kwas askorbinowy zabezpieczony w całym układzie przez glutation będzie działał korzystniej wraz z tymi związkami niż sam. Prawdopodobnie chodzi tu o intenzywniejsze procesy wzrostowe, których efektem jest zwyka poziomu kwasu askorbinowego.

Oczywiście na tej podstawie nie można wysuwać wniosków o mechanizmie ich działania na poziom kwasu askorbinowego. Należy jedynie wspomnieć, że w warunkach beztlenowych nie powstawał w żadnym wypadku kwas askorbinowy.

W wypadku ziarn o osłabionej żywotności wyniki są zbliżone do wyników uzyskanych przy ziarnach normalnych, ale niższe proporcjonalnie do procentu kielkowania tych ziarn.

Dodatkowy wpływ egzogennego kwasu askorbinowego na poziom endogennego glutationu zredukowanego można tłumaczyć dwojako: albo kwas
askorbinowy pobudza kiełkujące ziarna do syntezy glutationu zredukowanego, albo zabezpiecza powstały glutation zredukowany przed utlenieniem czy rozkładem. Ta druga możliwość jest bardziej prawdopodobna ze względu na to, że kwas askorbinowy jest silnym reductorem i zabezpiecza niektóre związki przed utlenieniem. Przykładem może być układ Mapsona-Goddarda, w którym bierze udział glutation i kwas askorbinowy (Mapson, Goddard 1951).

Rozpatrując ogólnie wpływ poszczególnych związków egzogennych na poziom endogennych należy stwierdzić, że ziarna normalne syntetyzowały więcej związków endogennych pod wpływem związków dostarczonych z zewnątrz. Brak tlenu w czasie kiełkowania ograniczał albo usuwał wpływ związków egzogennych. Działanie związków egzogennych na ziarna o osłabionej żywotności było wyraźnie mniejsze (kilkaastu procent w stosunku do ziarn normalnych), choć o podobnym charakterze jak działanie na ziarna o normalnej żywotności. Również rozpatrując działanie związków egzogennych w czasie kiełkowania stwierdzić można większy efekt zaraz po namoczeniu (2—3 dzień kiełkowania) niż w okrese późniejjszym. Wyraźnie zaznaczyło to się przy badaniach endogennych auksyn i glutationu.

WNIOSKI

Badano wpływ egzogennych związków aktywnych fizjologicznie: kwasu 3-indoliloococtowego, kwasu askorbinowego i glutationu na poziom tych samych związków endogennych. Badania przeprowadzono na kiełkujących ziarnach pszenicy (od 2 do 5 dnia kiełkowania) o zróżnicowanej żywotności: a) ziarna o normalnej żywotności kiełkowane w warunkach tlenowych, b) ziarna o normalnej żywotności kiełkowane w warunkach beztlenowych, c) ziarna o obniżonej żywotności kiełkowane w warunkach tlenowych. Zawartość endogennych związków badano w ziarnach pszenicy moczonych przez 24 godziny w odpowiednich związkach egzogennych, a następnie kiełkowanych w określony sposób. Dokładny opis stosowanych metod i materiałów zawarty jest w części pierwszej.

Na podstawie przeprowadzonych doświadczeń można wysnuć następujące wnioski:

1. W ziarnach pszenicy kiełkowanej normalnie, kiełkowanej beztlenowo oraz w ziarnach o osłabionej żywotności moczenie przed kiełkowaniem w mieszaninie roztworu kwasu askorbinowego i glutationu wywoływało wzrost poziomu wolnych auksyn. Różnice w stosunku do kontroli były większe na początku badanego okresu (2—3 dzień kiełkowania) zmniejszały się w okresie późniejjszym.

2. W ziarnach pszenicy normalnie kiełkowanej i w ziarnach o osłabionej żywotności moczonych przed kiełkowaniem w kwasie 3-indolilo-
octowym, glutationie — roztworach pojedynczych oraz w mieszaninie kwasu 3-indolilooctowego, kwasu askorbinowego, glutationu i CuSO₄, zawartość kwasu askorbinowego wzrastała dość znacznie. W ziarnach kielkowanych w warunkach beztlenowych, a traktowanych wyżej wspomnianymi związkami oraz w wodzie, nie stwierdzono obecności kwasu askorbinowego.

3. Stwierdzono wzrost zawartości glutationu zredukowanego w stosunku do kontroli o około 30% w początkowym okresie kielkowania (2—3 dzień) w ziarnach o normalnej żywości moczonych w kwasie askorbinowym. W następnym okresie kielkowania (4—5 dzień) ogólna ilość glutationu wzrastała w tych ziarnach, ale różnica w stosunku do kontroli była mała. Kwas 3-indolilooctowy obniżał stymulujący wpływ kwasu askorbinowego na poziom glutationu szczególnie w ziarnach o normalnej żywości.

4. Wpływ związków dostarczonych z zewnątrz (egzogennych), szczególnie na poziom glutationu i kwasu askorbinowego, był najwyraźniejszy w ziarnach normalnych. Brak tlenu przy kielkowaniu ograniczał lub nawet usuwał efekt działania związków egzogennych. Działanie związków egzogennych na poziom endogennych w ziarnach o osłabionej żywości było mniejsze, choć podobne w swoim charakterze, jak w ziarnach normalnych.

Katedra Fizjologii Roślin
Wyższej Szkoły Rolniczej
we Wrocławiu

(Wpłynęło 9.2.1965 r.)

SUMMARY

The influence of the following exogenous physiologically active compounds, 3-indolylacetic acid, ascorbic acid and glutathione, on the content of the same substances in germinating grain was investigated. Wheat grains (from 2nd to 5th day of germination) of different viability were used for the experiments: a) grains with normal viability in aerobic conditions, b) grains with normal viability in anaerobic conditions, c) grains with reduced germination power in aerobic conditions. The content of endogenous compounds was studied in wheat grains soaked for 24 h in the respective substances and then germinated as mentioned above. A description in detail of the methods and materials used is given in Part I of this paper.

On the basis of the experiments carried out the following conclusions may be advanced:

1. In wheat grains germinating normally, anaerobically and those with reduced viability, soaking before germination in a mixture of ascorbic acid and glutathione solutions induced a rise of the free auxins level. The differences as compared to the controls were wider at the beginning of the experimental period (2nd—3rd day of germination) and diminished later.

2. In wheat grains germinating under normal conditions and those with reduced viability soaked before germination in 3-indolylacetic acid and glutathione solutions, respectively, or in a mixture of 3-indolylacetic acid, ascorbic acid,
glutathione and CuSO₄, the ascorbic acid content increased quite considerably. No ascorbic acid was found in grains germinating under anaerobic conditions and pretreated as mentioned above or soaked in water.

3. A rise of the glutathione level, reduced as compared to that of the controls by about 30 percent in the initial germination period (2nd—3rd day), was observed in grains with normal viability soaked in ascorbic acid. In the subsequent stages of germination (4th—5th day) the total glutathione content in these grains increased but the differences in relation to controls diminished, 3-indolyiacetic acid reduced the stimulating effect of ascorbic acid on the glutathione level, particularly in grains with normal viability.

4. The effect of exogenous compounds (supplied from outside) on the glutathione and ascorbic acid levels was most pronounced in normal grains. The absence of oxygen during germination restricted or even abolished the effect of the exogenous compounds. The influence of exogenous on the level of endogenous compounds in grains with depressed viability was weaker although similar in character to that in normal grains.

Department of Plant Physiology, College of Agriculture, Wroclaw

LITERATURA

Crocker W., Barton L. V., 1953, Physiology of seeds (tłumaczenie na jęz. roś. III Moskwa 1955).
Manson L. W., Goodard D. R., 1951, Nature 167:975.