Regeneracja gametofitu i rozmnażanie wegetatywne *Mnium punctatum* (Schreb.) Hedw.

Regeneration of the gametophyte and vegetative propagation in Mnium punctatum (Schreb.) Hedw.

M. Misiura

Doświadczenia przeprowadzono na pospolitym gatunku *Mnium punctatum*, zebranym w lasach bukowych nad Jeziorom Rożnowskim. Gatunek ten jest wygodnym materiałem doświadczalnym ze względu na duże liście o prostej budowie. Obserwacje nad regeneracją i rozmnażaniem wegetatywnym prowadzone były od października 1962 r. do października 1963 r.

METODA

W celu zbadania regeneracji łodygi, okaleczono gametofity badanego gatunku w ten sposób, że: 1) odcięto szczyty 20 gametofitom, 2) usunięto liście z łodyg 20 gametofitów, 3) pocięto poprzecznie łodygi 20 gametofitów pomiędzy nasadami liści na drobne 3 mm fragmenty. Okaleczone rośliny umieszczono w szalkach Petriego z zawartością wody destylowanej.

Przeprowadzone doświadczenia pozwoliły wyciągnąć wnioski dotyczące regeneracji i rozmnażania wegetatywnego z łodygi gametofitu *Mnium punctatum*.

Celem prześledzenia regeneracji liści, w styczniu 1963 r. pocięto liście według zamieszczonego schematu (ryc. 1), podobnie jak w pracy *Lersten* (1963). Uzyskane w ten sposób fragmenty z określonego miejsca liścia umieszczono w oddzielnych szalkach Petriego z zawartością: 1) kwasu giberelinnowego: 0,1% / 0,02% / 0,01%, 2) wody destylowanej. Szalki oświetlono od góry żarówką 200 Watt przez 10 godzin dziennie. Temperatura pomieszczenia hodowli wahała się w granicach 18—20°C. Drugą taką samą serię hodowli prowadzono w termostacie w temperaturze 25°C.

Po raz drugi hodowłę regenerujących liści prowadzono w lutym 1963 r. Liście pocięto jak uprzednio, stosując mniejsze stężenia kwasu giberelinowego, pożywkę Molischa i wodę destylowaną jako kontrolę. Fragmenty liści umieszczano w szalkach Petriego z zawartością: 1) kwasu
giberelinowego 0,008%/o, 0,005%/o, 0,001%/o, 2) pożywki Molischa i 3) wody destylowanej. Szaliki przez 10 godzin dziennie oświetlano od góry dwiema żarówkami 200 Watt. Kontrolowana temperatura wahała się w granicach 24—27°C.

W październiku 1963 r. fragmenty liści Mnium punctatum poddano krótkotrwałemu działaniu kwasu giberelinowego 0,001%/o przez okres: 1 godziny, 1/2 godziny oraz 3 sekund, a następnie przeniesiono na wodę destylowaną. Fragmenty kontrolne umieszczono bezpośrednio na wodzie destylowanej. Hodowlę oświetlano przez 10 godzin dziennie dwiema żarówkami 200 Watt. Temperatura pomieszczenia wahała się od 23 do 25°C. Kontrolę skrawków hodowanych we wszystkich doświadczeniach przeprowadzano początkowo po 5 dniach, a następnie co 3 dni. Prowadzenie hodowli w różnych warunkach temperatury, naświetlenia oraz w różnych środowiskach pozwoliło na zbadanie, jaki wpływ wywierają powyższe czynniki na regenerację.

Równolegle do powyższych obserwacji, procesy regeneracji i rozmnażania wegetatywnego śledzone były na roślinach umieszczonych w zamkniętych krystalizatorach na humusie. Darnie tej hodowli, zwanej dalej hodowlą naturalną, zraszane były wodą wodociągową.

WYNIKI

Gametofit Mnium punctatum wykazuje znaczną żywotność, która przejawia się dużą zdolnością do regeneracji. W warunkach hodowli naturalnej obserwowano powstawanie protonemy z miejsca łodygi położonych w pachwinach liści oraz nowych pędów odrastających bezpośrednio z tych części łodygi. Zjawisko rozmnażania Mnium punctatum w hodowli naturalnej traktuję jako naturalny proces rozmnażania wegetatywnego, za regenerację zaś przyjmuje rozwój z fragmentów rośliny. U Mnium punctatum bowiem, podobnie jak i u innych mchów, trudno jest prześledzić granicę między procesem rozmnażania wegetatywnego a regeneracją.
Tabela 1

Regeneracja z fragmentów liści na różnych substratach
\[
\text{Regeneration of leaves fragments on different media}
\]

<table>
<thead>
<tr>
<th>Substrat Medium</th>
<th>%</th>
<th>Liczba skrawków nastawionych do regeneracji</th>
<th>Liczba skrawków regenerujących</th>
<th>Czas regeneracji (liczba dni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwas giberelinowy Gibberelle acid</td>
<td>0,1</td>
<td>80</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>0,02</td>
<td>80</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
<td>80</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>0,008</td>
<td>80</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0,005</td>
<td>80</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Pożywka Molischa Molish medium</td>
<td>ciągle continuosly</td>
<td>80</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1—2 godz. 1—2 hrs</td>
<td>80</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3 sek. 3 sec.</td>
<td>80</td>
<td>59</td>
<td>11</td>
</tr>
</tbody>
</table>

H₂O dest.
Styczeń January | 80 | 55 | 21 |
Luty February | 57 | 11 |
Październik October | 80 | 57 | 11 |

W łodydze gametofitu *Mnium punctatum* znajdują się określone strefy twórcze, które odznaczają się szczególnie dużymi zdolnościami regeneracyjnymi. Są to grupy wielokątnych komórek, różniących się kształtem i wielkością od otaczających komórki skórki łodygi i odznaczających się zdolnościami embrionalnymi. Znajdują się one w pachwinach liści na całej długości łodygi. Podziały tych komórek, które w konsekwnecji dają początek licznym protonemom oraz pedom potomnym, można przyspieszyć przez okaleczenie rośliny. Już po trzech dniach od momentu okaleczenia obserwuje się powstawanie dużej ilości protonem z komórek brzeźnych strefy twórczej. Szybkość powstawania protonem, jak też i intensywność wzrostu, zależna jest od jakości okaleczenia rośliny. Przy więk-
szym okaleczeniu następuje szybszy ich wzrost niż przy małym. Najszybšzy wzrost protonem następował w przypadku poprzecznego pocięcia całej rośliny na drobne fragmenty. Po ścięciu szczytów pędów najszybszy wzrost protonem obserwowano przy miejscu okaleczenia, tj. w górnej części pędu, słabszy zaś w kierunku ku chwytnikom. Przy zerwaniu liści następował równomierny wzrost protonem ze strefy twórczej na całej długości łodygi.

Występująca na łodydze *Mnium punctatum* strefa twórcza daje nie tylko protonemy, lecz w wyniku podziałów komórek powstają bezpośrednio gametofory potomne. Chociaż powstawanie protonem jest wcześniejsze i sygnalizują one zachodzącą tu regenerację, to młody gametofor powstający bezpośrednio ze strefy twórczej (Tablica I, ryc. 4, 5) kształtuje się o wiele wcześniej aniżeli z protonemy. Jego wzrost, jak w przypadku splątków, jest najszybszy przy największym okaleczeniu rośliny.

W warunkach hodowli naturalnej *Mnium punctatum* nie obserwuje się nigdy powstawania protonem z liści zdrowych, nie okaleczonych. Tworzą się one z liści giniących, odpadających od rośliny. Ten sposób regeneracji w warunkach naturalnych niewątpliwie odgrywa dużą rolę, obumierające części liści stanowią początek do wytworzenia protonem. Eksperymentalnie można je uzyskać rozcinając liście na drobne fragmenty. W hodowli prowadzonej w styczniu 1963 r. największa ilość fragmentów liści regenerowała na wodzie destylowanej z okolicy przyzeberkowej liści. Regeneracja nastąpiła po 21 dniach. Tylko nieliczne regenerowały w zastosowanych stężeniach kwasu giberelinowego, dając zdeformowane, wolno wzrastające splątki (ryc. 4, 5 na Tablicy II). Wynika z tego, że powyższe stężenia kwasu giberelinowego (0,10%, 0,02%, 0,01%) wywierają wyraźnie hamujący wpływ na regenerację *Mnium punctatum*. Seria hodowli prowadzona w termostacie w ciemności w ogóle nie regenerowała. Z wystawionych na światło, po 6–tygodniowym zamknięciu w termostacie, regenerowały tylko te, które były umieszczone na wodzie destylowanej.

W hodowli prowadzonej w lutym 1963 r. przy temperaturze 24°—27°C na mniejszych stężeniach kwasu giberelinowego, na pożywce Molischa

Objaśnienia do Tablicy I — Explanations of the Plate I

Regeneracja gametofitu ze strefy twórczej i protonemy

1 — strefa twórcza bezpośrednio po zdjęciu liścia; 2, 3 — regenerująca strefa twórcza; 4, 5 — pęd potomny powstający ze strefy twórczej; 6, 7 — powstawanie gametofitu z protonem; a — strefa twórcza; b — protonema; c — blizna po liściu; d — łodyga; e — chwytnik

Gametophyte regeneration from meristematic zone and protonema

1 — meristematic region just after the removal of the leaf; 2, 3 — regenerating meristematic zone; 4, 5 — adventitious shoot from meristematic region; 6, 7 — gametophyte formation from protonema; a — meristematic zone; b — protonema; c — leaf's scar; d — shoot; e — rhizoids
i w wodzie destylowanej regeneracja najszybciej zaszła w pożywce Molisch'a i wodzie destylowanej — po 11 dniach. W zastosowanych stężeniach kwasu gibberelinowego regeneracja przebiegała następująco: 0,001% i 0,005% po 17 dniach, 0,008% po 20 dniach, a sprawki tej hodowli były zdeformowane, o wyraźnie powolniejszym wzroście.

W hodowli prowadzonej w październiku 1963 r. najwcześniej uległy regeneracji fragmenty liści moczonych przez okres 1/2 godziny i 1 godzinę w kwasie gibberelinowym 0,001% — po 8 dniach. W skrawkach namacza-nych przez 3 sek. w kwasie gibberelinowym i kontrolnych regeneracja zaszła po 11 dniach. Jak z tego wynika, kwas gibberelinowy 0,001% stymuluje wzrost protonem tylko w przypadku poddawania jego działaniu fragmentów liści przez okres 1/2 i 1 godziny. Działanie kwasu gibberelinowe przez 3 sek. nie wywiera żadnego wpływu na regenerację liści.

Poza opisanymi powyżej sposobami regeneracji przez powstawanie protonem i pędów potomnych ze stref twórczych łodygi, w hodowli naturalnej na humusie u Mnium punctatum zaobserwowano ponadto występowanie rozmnóżek (ryc. 2). Wyrastają one z łodygi w pachwinach liści. Trudne do zauważenia, są one widoczne dopiero po zerwaniu liści z łodygi. Są to początkowo jedno-, następnie dwu- i trzykomórkowe organy, osadzone na krótkich, brunatnych 2—3-komórkowych trzoneczkach. W stadium trzykomórkowym odpadają od trzoneczków i oddzielają się od rośliny. Komórki rozmnóżek są wydłużone, z owalną komórką szczytową. Długość rozmnóżek zależy od ich wieku i związanej z nim

Ryc. 2. 1—3 — rozmnóżki; 4 — oderwa- na rozmnóżka; 5 — protonema wytwo- rzona z rozmnóżki
1—3 — gemmae; 4 — separated gem- ma; 5 — protonema from a gemma

0,1 mm

Objaśnienia do Tablicy II — Explanations of the Plate II

Regeneracja protonemy z fragmentu liścia:
1—3 — na wodzie destylowanej; 3—4 — na kwasie gibberelinowym
Regeneration of protonema from leaf's fragment:
1—3 — in water; 4, 5 — with gibberelllic acid
budowy. Młode jednokomórkowe posiadają długość 113 μ, dwukomórkowe 120 μ, trzykomórkowe 130 μ i szerokość 17—18 μ. Trzonki ich są o połowę węższe od komórek rozmnóżki, o długości 35 μ. Komórki rozmnóżek są początkowo bezchlorofilowe, z zawartością drobnych ziarnistości, przed oderwaniem się powstają w nich liczne chloroplasty. Po oderwaniu się zachodzi w nich intensywny podział komórek, dając początkowo krótkokomórkowe protonemy. Rozmnóżki Mnium punctatum, jak również każdego innego gatunku Mnium, nie są dotychczas znane i notowane w literaturze.

WNIOSKI

1. Szybkość regeneracji zależy od stopnia okaleczenia rośliny, przy większym okaleczeniu jest ona szybsza.

2. Podwyższona temperatura do 24°—27°C wpływa na szybszy przebieg regeneracji.

3. Regeneracja zachodzi tylko na świetle.

4. Regeneracja łodygi ze strefy twórczej prowadzi do wytworzenia: a) protonemy, b) bezpośrednich gametoforów potomnych.

5. Regeneracja liści prowadzi we wszystkich przypadkach do wytworzenia protonemy. Najszybszej regeneracji ulegają przyżeberkowe odciągi liści (2 i 4).

6. W nie sprzyjających warunkach edaficznych w hodowli naturalnej następuje intensywne rozmnażanie przez: a) protonemy, b) pędy potomne, c) rozmnóżki.

7. Kwas giberelinowy hamuje proces regeneracji liści w przypadku długotrwałego działania, przyspiesza zaś po 1/2- i 1-godzinnym działaniu.

Dziękuję serdecznie Pani Doc. I. Rejment-Grochowskiej za cenne wskazówki, jakich mi nie szczędziła w czasie wykonywania i pisania niniejszej pracy.

Zakład Systematyki i Geografii Roślin
Uniwersytetu Warszawskiego
i Zakład Biologii Akad. Med. w Warszawie

Wpłynęło: dn. 11.11.1963

SUMMARY

The regeneration of the leaves and shoots and the vegetative propagation of Mnium punctatum were studied. The apices of 20 gametophytes were cut, then from 20 gametophytes the leaves were removed and in 20 gametophytes the shoots were transversely cut into 3 mm fragments. The damaged plants were grown in distilled water.

The leaves of Mnium punctatum were cut according to the indicated scheme. The fragments were grown in Petri dishes a) with gibberelic acid (0,1%, 0,02%,...
0.01%, 0.008%, 0.005% and 0.001%, b) in Molisch medium, c) in distilled water and d) in distilled water with short period of 1 hr., 0.5 hr. and 3 secs treatment with 0.001/gibberelic acid. The temperature was 18—25°C. 10-hours photoperiod with 200 Watt bulbs illumination was applied. The fragments were inspected each fifth day and later each third day.

The regeneration is more intensive when the plant is more damaged. The meristematic zone of the shoots is especially able to regenerate. The induced cell divisions lead to the formation either of protonemata or of the adventitious shoots.

The regeneration of leaves lead to the formation of protonemata. The prolonged action of 0.1%, 0.02%, 0.01%, 0.008%, 0.005% and 0.001% gibberelic acid inhibit the regeneration of leaves. 0.001% gibberelic acid applied for 1 hr, 0.5 hr or 3 sec. stimulates the formation of protonema from the leaves. The most active regeneration was obtained from the area along the leaf’s rib.

In culture on humus the formation of gemmae was observed. The mature gemmae consist of three cylindrical cells on three-celled, brown stalks. When separated from the plant they elongate into protonemata.

LITERATURA

