Badania nad chromoplastami I. Przemiany morfologiczne plastydów w dojrzewających owocach

Studies on chromoplasts I. Morphological changes of plastids in the ripening fruit.

JAN ZURZYCKI

(Wpłynęło 27.X.53)

WSTĘP

Morfologia i struktura chromoplastów, stan barwników w tych plastydach i ich funkcja są stosunkowo słabo poznane, w przeciwieństwie do chloroplastów, gdzie problemy te są znacznie lepiej wyjaśnione. Nasze wiadomości z tej dziedziny opierają się głównie na wynikach starszych prac (Meyer 1883, Schimp 1883, 1885), które wielokrotnie wymagają rewizji i uzupełnienia zwłaszcza w związku z postępami biochemii barwników. W ostatnich latach daje się zauważyć wzmożenie zainteresowania chromoplastami (Straus 1942, Wier 1942, Roberts i Southwick 1948), wyniki nowych prac są jednak bardzo często sprzeczne.

W większości wypadków tematem badań są wykształcone chromoplasty. Wydaje się, że prześledzenie powstawania tych plastydów mogłoby dać znacznie więcej niż badanie tylko dojrzalych chromoplastów. Tego rodzaju rozwojowy punkt widzenia jest konieczny tym więcej, że ostatnio sugeruje się genzę chromoplastów zasadniczo różnicującą się od dotychczas przyjmowanej (Kljuczarew 1950).

Praca niniejsza ma na celu stwierdzić w jaki sposób i z jakich części komórki powstają chromoplasty i opisać zachodzące przy tym przemiany morfologiczne w plastydach.

MATERIAŁ I METODA

Obserwacji dokonywano wyłącznie na świeżym materiale. Preparaty sporządzano w formie skrawków (u dojrzewających owoców) lub przez wyprzemywanie małego wycinka tkanki i rozluźnienie komórek przez lekki nacisk szkielka nakryw-
kowego (u dojrzalych owoców). Obiekty badano w wodzie. Czas obserwacji nie przekraczał nigdy 1 godziny od momentu sporządzenia preparatu.

Do obserwacji używano objektwu Zeissa aprochromat 90 × NA 1,4 i okularu 7 lub 10 ×. Pomiarów dokonywano przy pomocy okularu mikrometrycznego 15 ×. Do obserwacji i zdjęć używano filtrów niebieskich różnej intensywności.

WYNIKI

A. Typowe formy wykształconych chromoplastów

W dojrzalych owocach wybranych do badań gatunków roślin występują chromoplasty wyraźnie różniące się między sobą. Wydają się one stanowić przykłady pewnych zasadniczych typów budowy. Chromoplasty owoców 26 innych gatunków, które były obserwowane, dają się z mniejszym lub większym przybliżeniem podciągnąć pod jeden z tych czterech typów.

Sambucus. Chromoplasty stosunkowo małe około 2 μ średnicy, barwy żółtej lub jasno żółto-pomarańczowej o zarysie nieostro ograniczonym. Kształt ich bywa nieregularny, zwykle jednak zarys chromoplastów jest kolisty lub eliptyczny. Czasem, kiedy chromoplast jest zginiony między kulami tłuszczu, obficie występującego w komórkach dojrzałego owocu, miewa on kształt nieregularnego trójkąta. Barwnik w nieuszkodzonym chromoplastie skupiony jest w kulistych granach średnicy około 0,5 μ lub mniejszej, gęsto obok siebie ułożonych, nieostro odcinających się od tła, dlatego nie zawsze wyraźnie widocznych. Stroma zredukowana — trudno powiedzieć czy jest bezbarwna czy zarabwiona.

Barwnik zlokalizowany jest wyłącznie w chromoplastach. Nie obserwowano nigdy pojedynczych ziarenek barwnika w plazmie. Skupienie kilku chromoplastów może robie wrażenie barwnych złogów plazmy. Pod wpływem uszkodzenia występuje niekiedy dyfuzja barwnika na zewnątrz chromoplastów — wówczas jedna lub kilka sąsiadujących kul tłuszczowych zabawia się jednostajnie na kolor żółty.

Physalis. Chromoplasty dość duże, kształtu dyskowatego, w widoku z góry o zarysie ± okrągłym i średnicy około 4 μ. Barwa intensywnie pomarańczowa, zarys bardzo ostro ograniczony, wyraźnie odcinający się od tła. Barwnik zebrany w formie wyraźnych gran jednakowej wielkości, średnicy około 5,0 μ, intensywnie pomarańczowych ± równomiernie rozemieszczonych w całej masie chromoplastu. Poza chromoplastami nie widać w komórce żadnych skupień barwnika.

Sorbus. Chromoplasty mają kształt igielkowatych wrzecion na szczerczych w środku lub równoważnych wzdłuż pewnego odcinka środkowego i zwężających się na obu końcach. Grubość wrzeciona średnio 1 — 2 μ, długość około 15 μ. Zarys ostro ograniczony od tła. Niekiedy igły roz-
szczególną się na końcu lub nawet w środku dając utwory o trzech zaostrzonych końcach. Struktura homogeniczna lub niewyraźnie włóknista (na granicy widzialności mikroskopowej). W niektórych chromoplastach widać jaśniejsze, mniej intensywnie zabarwione miejsce o kształcie wydłużonej elipsy; podobne jaśniejsze trójkątne miejsca występują zazwyczaj w miejscu rozgałęzienia wrzeciona.

Solanum. Plastydy o kształtach dość zmienność, zazwyczaj elipstycznych lub nieregularnych, mają średnicę wahać się w szerokich granicach od 2 do 4 μ. Stroma bezbarwna lub lekko żółtawa. Barwnik występuje w formie nielicznych, zwykle pomarańczowych gran o średnicy 0,3 — 1 μ rozmieszczonych nieregularnie, lub w postaci żólto-pomarańczowych krysztalików kształtu tępych igieł lub rombów. Kryształy te są zazwyczaj mniejsze niż średnica plastydów, czasem jednak rozciągają plastyd a nawet występują z niego. Zbite skupienia większej ilości plastydów robia wrażenie barwnych złożów plazmy.

Pozap chromoplastami barwnik występuje w plazmie w postaci licznych pomarańczowych gran oraz w postaci krysztalików kształtu tabliczek lub taśm o różowo-czerwonym zabarwieniu. Kryształy te są często związane ze zdegenerowanym chromoplastem. Ich długość z reguły wielokrotnie przewyższa średniicę plastydy. Różnią się one od krysztalików występujących wewnątrz plastydów, poza wielkością, barwą i kształtem także gęstością optyczną. Duże taśmowate kryształy są z reguły blade, więcej przepuszczalne dla światła.

B. Podział okresu rozwoju owocu.

Rozwój owocu od stadium kwitnienia do pełnej dojrzalości podzielono na 6 stadiów łatwych do scharakteryzowania już po wyglądzie zewnętrznym lub wymiarach. Stadium I to okres kwitnienia, owoc najbardziej zielony (maximum rozwoju wegetatywnego) jest w stadium III, stadium VI to stadium zupełnej dojrzalości.

Odnoszenie rozwoju plastydów do tak określonych faz rozwojowych a nie w stosunku do czasu rozwoju daje łatwiej powtarzalne wyniki, ponieważ niezależna od sergę czynników wpływających na szybkość rozwoju owocu. W poniższym zestawieniu opisane są wybrane stadia rozwoju od I do VI dla każdego gatunku (w nawiązach podano przybliżone czas rozwoju owocu, rozpoczynając od pełni kwitnienia).

Sambucus.

I. Kwiat w pełni kwitnienia. Załążnia około 1 mm średnicy.
II. Owoc jasnozielony 2,5 — 3 mm średnicy (2 — 3 tyg.).
III. Owoc żywo ciemnozielony, około 4 mm długości, w szczycowej części lekko zwężony (± 4 tygodnie).
IV. Owoc jasnozielony, prawie kulisty o średnicy 4,5 – 5 mm (± 6 tyg.).
VI. Owoc dojrzały. Owoc intensywnie czerwony, pełen turgoru, o średnicy około 5 mm. Miękisz żółty, a komórki zupełnie rozpylają się. (10 – 12 tygodni).

Physalis.
I. Kwiat w pełni kwitnienia. Zalążnia około 1,5 mm średnicy.
II. Torebka 1 – 2 cm dł. zielona, jagoda około 4 mm średnicy, jasnozielona (± 2 tygodnie).
III. Torebka – 4 cm, zielona, jagoda około 10 mm jasnozielona (± 4 tygodnie).
IV. Torebka około 4 cm, barwy zielono-żółtawej, jagoda około 10 mm, bladozielona lub żółtowo-zielona (około 6 – 8 tygodni).
V. Wielkość jagody i torebkach bez zmian. Barwa jasnopomarańczowa (8 – 10 tygodni).

Sorbus.
I. Kwiat w pełni kwitnienia.
II. Owoc wydłużony około 3 mm dł. jasnozielony (± 2 tygodnie).
III. Owoc żywo zielony lekko wydłużony, około 5 mm dł. 4 mm szer. (± 4 tygodnie).
IV. Owoc jasnozielony kulisty, około 7 mm średnicy (6 – 7 tygodni).
VI. Owoc dojrzały około 7 mm średnicy. Miękisz intensywnie pomarańczowy (8 – 12 tygodni).

Solanum.
I. Kwiat w pełni kwitnienia. Zalążnia około 1 mm średnicy.
II. Owoc jasnozielony, kulisty, około 6 mm średnicy.
III. Owoc jasnozielony. W widoku z góry ± 3 cm średnicy.
IV. Owoc w widoku z góry ± 5 cm średnicy. Część przy szczypce ciemnozielona.
V. Owoc jasnopomarańczowy, u podstawy żółtzielony. Wymiary bez zmian.
VI. Owoc dojrzały, miękżej konsystencji. Wymiary jak poprzednio. Barwa skórki i miękisu czerwona.

(W wypadku Solanum badano plastydy w komórkach leżących u podstawy owocu ze względu na malą ilość skrobii tu występującą).

C. Zmianny ilości plastydów w komórkach

Badanie średniiej ilości plastydów w komórce odbywało się drogą liczenia plastydów w 50 komórkach dla każdego z wybranych 6 stadiów. Wyniki przedstawia ryc. 1.

W stadium I u wszystkich roślin badanych liczenie plastydów jest bardzo utrudnione ze względu na ich małe wymiary i złą widoczność. Stąd wynik jest przypuszczalnie obarczony bardzo dużym błędem. Również trudno jest określić ilość chromoplastów u Sambucus w okresie VI, gdyż są one często przesłaniane przez liczne kropki tłuszczu wypełnia-

Changes in number of plastids as fruit ripen. Abscissae — stage of ripening, ordinates — average number of plastids in cell.

jącą komórkę. Wyraźny spadek krzywej w tym stadium można przypuszczalnie tłumaczyć pominięciem niektórych plastydów przy liczeniu. U Solanum w stadium VI nie jest możliwe w ogóle stwierdzenie ilości plastydów, ze względu na ich przemiany morfologiczne, jakie w tym okresie mają miejsce.

Jak widać z wykresów ilość plastydów początkowo mała (w komórkach załajni) szybko rośnie i osiąga już w stadium II (Sambucus, Sorbus) lub III (Physalis, Solanum) wartość stałą, która zachowuje się w dalszym okresie rozwoju owocu. Oznacza to, że:

a) podziały plastydów (a przynajmniej podziały odbywające się na szerszą skalę) zostają zakończone we wczesnych stadium rozwoju owocu, a w każdym razie równocześnie z osiągnięciem maksimum rozwoju wegetatywnego (stadium III).

b) średnia ilość chromoplastów w komórkach dojrzałego owocu jest prawie zawsze taka sama jak średnia ilość chloroplastów po zakończeniu ich podziałów.

Bezwzględna ilość plastydów w komórkach owocu jest u różnych gatunków różna i wynosi np. u Sambucus i Sorbus około 40, Physalis oko-
ło 80, u Solanum około 140. Wahania indywidualne w poszczególnych ko-
mórkach są bardzo duże (np. Physalis stadium V, średnio 86 chloro-
plastów, wahania 60—127, Solanum stadium V — średnio 144, wahania
73—248).

D. Zmiany kształtu i wielkości plastydów

Sambucus. W komórkach załąźni (stadium I) plastydy są względnie
duże (około 3 μ średnicy), blado zielone lub prawie bez zabarwienia,
o kształcie dyskowatym, słabo oddzielające się od plazmy. Struktury żąd-
ne nie wykazują (Ryc. 3). W stadium II chloroplasty są większe, kształtu
dyskowatego, zielone, ze słabo widoczną strukturą granową (Ryc. 4).
Wielkość chloroplastów osiąga maksimum w stadium III. Chloroplasty
mają wówczas około 5 μ średnicy, kształt pozostaje bez zmian, zabarwie-
nie intensywnie zielone. Struktura granowa bardzo wyraźna. Liczne ziel-
one grana mają około 0,5 μ średnicy (Ryc. 5). W stadium IV chloroplasty
stają się mniejsze, oraz mniej intensywnie zabarwione. Struktura
granowa widoczna ale nie tak wyraźna jak w stadium poprzednim (Ryc.
6). Znaczne zmniejszenie plastydów obserwuje się w stadium V. Zarys
ich jest okrągłej, eliptycznej lub nieregularny, barwa żółtozielona. Bar-
wiki zebrane w niewyraźnych, żółtozielonych ziarnistościach o rozmy-
tych zarysach (Ryc. 7). W tym stadium struktura plastydów jest bardzo
nietrwała i łatwo ulega uszkodzeniu przy sporządzaniu preparatu. Można
wówczas obserwować obok zielonkawego plastydu kuliste kropki silnie
łamiące światło o kolorze żółto pomarańczowym. (Ryc. 10). Są to
przypuszczać w produkty odmieszania, zawierające żółte barwki. W sta-
dium VI plastyd jest jeszcze bardziej skurczony, o zarysie nieregular-
nym zwykle zbliżonym do kolistego. Kontury nieostre. Cały chromoplast
zabarwiony na kolor żółtopomarańczowy. Intensywne skupienia barwi-
ka w postaci ziarenko o wymiarach około 0,5 μ lub mniejszych są pogrą-
żone w stromie. (Ryc. 8, 9). Ryc. 2 przedstawia zmienny wymiarów pla-
stydów (średnie średnice i średnie grubości) obliczonych jako średnia
pomiarów 30—50 plastydów z różnych komórek. Widoczne są bardzo
wyraźne zmiany wymiarów a co za tym idzie, masy plastydów w ciągu
ich metamorfozy.

Physalis. Komórki załąźni (stadium I) mają plastydy bardzo małe,
około 1 μ średnicy, bezbarwne lub lekko bladozielone, kształtu kuliste-
go lub prawie kulistego. (Ryc. 11). W stadium II chloroplasty zwiększają
swe wymiary, przybierają kształt dyskowaty, barwę bladozieloną bez
wyraźnej lub z niewyraźną strukturą granową. (Ryc. 12). Struktura ta
w stadium III staje się bardzo wyraźna i kontrastowa. (Ryc. 13). W dal-
szym rozwoju (stadium IV) plastydy są początkowo jeszcze bladozielo-
ne, z niewyraźną, jakby zamazaną strukturą granową. W okresie tym pojawiają się ostro zarysowane pomarańczowe ziarenka 0,5—1,5 μ średnicy. Później zielona barwa gran staje się coraz bledsza, wreszcie zanika zupełnie. Zarys plastydu ogranicza tylko kilka pomarańczowych ziaren z umieszczonych prawie wyłącznie na obwodzie plastydu. (Ryc. 14. 15). W stadium V strona jest już całkowicie bezbarwna. Pomarańczowe ziarenka przy brzegach zlewają się ze sobą, tworząc dwa lub więcej skupień albo jedno pasmo półsączkowate lub pierścieniowe, zajmujące brzegi plastydów, a złożone z licznych tuż koło siebie leżących, pomarańczowych gran (Ryc. 16, 17). Dojrzałe chromoplasty (stadium VI) mają kształt dyskowaty, barwę intensywnie pomarańczową. Wypełnione są całkowicie zwartą masą ziarenka o średnicy 0,5—1 μ, silnie lamiących światło W niektórych plastydach część centralna posiada rzadziej ułożone gran. (Ryc. 18, 19). Jak wynika z ryc. 2 wielkość plastydów osiaga w stadium III stałe wymiary, które nie ulegają zasadniczym zmianom w dalszym rozwoju.

Sorbus. Plastydy zalążni (stadium I) — bardzo małe, około 1 μ średnicy, bezbarwne, trudno widoczne; kształt kulisty lub zbliżony do kulistego. (Ryc. 20). W stadium II chloroplasty są już znacznie większe, blado zielone, dyskowane z b. słabo widocznąukturą granową. (Ryc. 21). Struktura ta staje się nieco wyraźniejsza w stadium III (grana mają średnicę około 0,3 μ). Kształt staje się bardziej jeszcze płaszczyzny, barwa żółwio zielona. (Ryc. 22). W stadium IV plastydy mają zarys okrągłym lub eliptycznym. Struktura granowa b. słabo widoczna. Niektóre gran wydają się wyraźniejsze, ciemniejsze od pozostałych, o barwie bardziej żółtawej. (Ryc. 23). Pod wpływem uszkodzeń, w tej i w następnej fazie, lipoidy ulegają łatwo odmieszaniu i wypływają w postaci żółtych kropel na zewnątrz słabo żółtzielone zabarwione strony. (Ryc. 29, 30). W dalszym rozwoju (stadium V) chromoplasty stają się pomarańczowożółte o kształcie nierregularnym, wrecionowato wydłużonym około 4—6 μ długości. Struktura ziarnista słabo widoczna; plastyd albo całkowicie homogeniczny, albo widoczne jeszcze silniej zabarwione ziarnistości tkwiące w jednorodnej, również zabarwione masie. (Ryc. 24, 25). Łatwe uszkodzenia, widoczne w formie odmieszania, jak w fazie poprzedniej. Dojrzałe chromoplasty (stadium VI) mają postać igielkowatych wreciono około 15 μ długości i są intensywnie zabarwione na kolor pomarańczowy. Są one zupełnie homogeniczne. Niekiedy, zwłaszcza w wcześniejszym okresie widoczna jest b. niewyraźna struktura włókienkowa. (Ryc. 26—28). Na ryc. 2 podano zmiany wymiarów tylko do stadium V włącznie. W tym ostatnim okresie średnice mierzono na możliwie regularnych eliptycznych plastydach. Od stadium III do V wymiary, a zatem masa plastydów, nie ulegają zmianie. Przypuszczalnie także wydłużeniu chro-
Ryc. 2. Zmiany wymiarów plastydów podczas rozwoju owoców. Odcięcie — okres rozwoju owocu, rzędne — średnia średnica i grubość plastydu w μ.

Changes in dimensions of plastids as fruit ripen. Abscissae — stage of ripening, ordinates — average diameter and thickness in μ.

moplastu we wrzeciono nie towarzyszy zasadnicza zmiana objętości, gdyż jak wykazuje prosty rachunek objętość elipsoidy obrotowej o wymiarach \(3,2 \times 1,2 \text{ μ} (6,4 \text{ μ}^3)\), którą można traktować jako średnią objętość chloroplastów w stadium III — V, jest bardzo zbliżona do objętości wrzeciona o wymiarach średnich dla rozwiniętych chomoplastów (dług. 14,8, szer. 1,08μ, objętość około 5,3 μ³).

Solanum. Leukoptysy kwiatu (stadium I) bardzo małe do 1 μ średnicy, bezbarwne, kuliste, zyskują w dalszym rozwoju zabarwienie bladozielone. (Ryc. 31). W stadium II wymiary ich wynoszą około 2,5 μ średnicy, struktura granowa już staje się widoczna ale niezbędny wyraźna. (Ryc. 32). W stadium III chloroplasty w podstawowej części owocu wolne od skrobii są zielone dyskowane, o wyraźnej strukturze granowej. (Ryc. 33). W pozostałych częściach owocu chloroplasty zawierają duże ilości skrobii. Wymiary chloroplastów wzrastają jeszcze w stadium IV do 5—6 μ średnicy. Kształt typowy, barwa żywiozielona, grana wyraźnie widoczne, około 0,5 μ średnicy. Struktura granowa jest w tym stadium tak kontrastowa i łatwo dostrzegalna, że owoc w tym okresie mogą stanowić doskonały materiał do demonstracji budowy granowej. (Ryc. 34).
W późniejszym okresie (stadium V) wymiary plastydów stają się nieco mniejsze, barwa przechodzi w jasnozieloną, struktura granowa rozmyta. Pojawia się kilka małych (0,5—1,5 μ) wyraźnie pomarańczowych ziarenek o zarysie okrągłym lub wielokątnym (sztabkowatym). (Ryc. 36). Przy przygotowywaniu preparatu łatwo następuje uszkodzenie plastydów przejawiające się zazwyczaj w tworzeniu wakuoli. W późniejszym okresie tego stadium stroma staje się zupełnie bezbarwna i jest trudno dostrzegalna, a w niej tkwią jeden lub dwa (rzadziej więcej) igielkowate pomarańczowe kryształki. Do tego okresu nie widać w komórce barwika poza chromoplastami. (Ryc. 37). W dojrzałych owocach Solanum (stadium VI) plastydy mają kształt nieregularny. Stroma zabarwiona na żółto lub pomarańczowo zawiera większą lub mniejszą ilość ciemniejszych ziarnistości i zwykle jeden lub kilka igielkowatych lub rombowych pomarańczowo-żółtych kryształków. Poza plastydami barwik znajduje się w plazmie w postaci ziarenek o średnicy 0,5—1 μ podobnych do tych, które spotyka się w stromie plastydów i prawdopodobnie pochodzących z rozpadu plastydów. W końcowym okresie dojrzewania pojawiają się w placmnie, obok żółte pomarańczowych kryształków także i inne barwy różowe. Powstają one tylko w niektórych plastydach i szybko rosnąc wyszobadzają się ze stromy plastydu. Bardzo rzadko można obserwować w jednym chromoplastacji oba rodzaje kryształów. W dojrzałym owocu różne kryształy występują czasem w ścisłym kontakcie z plastydem, ale najczęściej leżą zupełnie luźno obok chromoplastów. Wymiary ich przewyższają wymiary plastydów (około 20 μ dług. i 2—3 μ szerok.). Zarys ich jest płytkowaty lub taśmowaty. (Ryc. 38—42).

Zmienność wymiarów plastydów (ryc. 2) wykazuje u Solanum pewne analogie do Sambucus — przede wszystkim redukcję objętości plastydu w okresie przemiany w chromoplast.

DYSKUSJA

Przytoczone obserwacje potwierdzają dawny pogląd o powstawaniu chromoplastów drogą metamorfozy innych plastydów (M e y e r 1883, S c h i m p e r 1883, 1885). W opisanych przypadkach powstają one przez metamorfozę chloroplastów. Świadczy o tym zarówno identyczna ilość chloroplastów i chromoplastów w komórkach jak również obserwacje kolejnych przemian plastydów. W żadnym z 4 zbadanych przypadków nie stwierdzono opisanej przez K l j u c z a r i e w e ę (1950) degeneracji, pęcznienia i zaniku chloroplastów i powstawania ziarenka karotenoidowych de novo w plazmie, jakkolwiek czasem, zwłaszcza gdy stroma jest bezbarwna i trudno dostrzegalna, pojawienie się w niej barwnych gran może robić wrażenie, że grana te powstają luźno w plazmie.
Chromoplasty powstają z chloroplastów, przy czym z każdego chloroplastu powstaje jeden chromoplast. Ilość chloroplastów w maksimum rozwoju wegetacyjnego determinuje zatem ilość chromoplastów w dojrzalym owocu. Obliczenia statystyczne nie wykluczają możliwości degeneracji względnie podziałów niektórych plastydów w okresie przemienny, ale zjawiska takie jeśli mają miejsce, są sporadyczne bez znaczenia statystycznego.

Wspólną cechą przemian przy powstawaniu różnych typów chromoplastów jest zmniejszenie (lub zanik całkowity?) ilości chlorofilów a zwiększenie ilości barwionych karotenoidowych (Goodwin 1952). Pojawianie się barwionych pomarańczowych w pewnych wypadkach już wówczas gdy plastyd jest jeszcze intensywnie zielony, w innych dopiero gdy stroma jest już zupełnie bezbarwna, zdaje się przemawiać przeciw istnieniu związku genetycznego pomiędzy karotenoidami a chlorofilem. Ilościowym zmianom barwionych towarzyszy przypuszczać zmiana struktury substmkrokopowej. Faza lipoidowa jest w tym okresie szczególnie luźno związana z białkową stromą i ulega łatwo odsłanianiu pod wpływem uszkodzenia mechanicznego lub kontaktu z wodą. Podobne zjawiska obserwował Beavere (1926) u dojrzali chromoplastów w płatkach Ranunculus (lipofaneroro) oraz W e i e r (1942) u chromoplastów Daucus, jednakże w tym ostatnim przypadku tylko pod wpływem alkoholu. U Sorbus odmieszanie faz lipoidowej w okresie przemiany chloroplastów w chromoplasty objawia się wypływem barwnych kropel tłuszczowych na zewnątrz stromy, u Sambucus zlewanie się w większe krople wewnątrz stromy, u Solanum wakuolizacją zbliżoną do tej, jaką opisuje K ü s t e r (1951) dla chloroplastów Mnium. Wykształcone chromoplasty posiadają znacznie bardziej trwałą strukturę.

Czynniki kształtowotwórczy — stroma — podlega przy metamorfozie mniejszym lub większym modyfikacją. Jej objętość może zostać zredukowana (Sambucus, Solanum) lub też pozostać bez zmiany przy zachowaniu dawnego kształtu (Physalis) lub zupełnie jego zmianie (Sorbus). Nie obserwowano zwiększenia objętości chromoplastów w stosunku do wykształconych chloroplastów.

W chloroplastach barwki zlokalizowane są głównie (lub wyłącznie?) w granach. Barwki karotenoidalne o ile nie przybierają form kryształów, występują również w granach (S c h i m p e r 1883). Grana te, szczególnie dobrze widoczne u Physalis, gdzie stroma wydaje się być zupełnie bezbarwna. Natomiast u Solanum w niektórych wykształconych chromatoplastach pomarańczowe barwki są jakby rozproszone w stromie. Zaobserwowane pojawianie się pomarańczowych gran najpierw na brzegach plastyd u Physalis zgodnie jest z danymi S c h i m p e r a (1885) dla Aloe, Oncidium i in.
W wykształconych chromoplastach Sorbus nie stwierdzono ani gran, których istnienie stwierdził Roberts i Southwick (1948) ani igielkowatych kryształów (Schimper 1885) mimo użycia bardzo dobrej optyki mikroskopowej. Struktura wrzecion jest zupełnie homogeniczna, jedynie czasem, zwłaszcza w młodszych stadiach występuje ledwo dostrzegalna struktura włókienkowa.

Ogólnie przyjmuje się, że wrzecionowaty kształt chromoplastów u Sorbus powstaje dzięki kristalizacji karotenów (Meyer 1883, Schimper 1885, Schürrhoff 1926, patrz także Straus 1953). Obserwacje odmieszania, gdzie barwik wypływa w formie kropel na zewntrz a prawie bezbarwna stroma zachowuje swój kształt wrzecionowaty (Ryc. 30) wskazuje na to, że raczej stromie należy przypisać rolę kształtowotwórczą.

Występowanie karotenoidów w formie dwu rodzajów kryształów obserwował u Solanum Millaret (cyt. wg Schimpera 1883) u marchwi Schimper (1885) i Weier (1942). Różnica w zabarwieniu nie jest związana, jak stwierdził Weier (1942) z rozcieńczeniem barwika. Należy raczej przypuszczać, że oba typy kryształów są różnymi rodzajami karotenoidów. W formie podobnej do czerwonych kryształów kristalizuje likopen, a do żółto-pomarańczowych karoten (Karrer i Jucker 1943). Nagłe pojawienie się w ostatniej fazie dojrzewania kryształów czerwonych w przeciwieństwie do powoli narażających pomarańczowych byłoby wtedy zgodne z wynikami Kuhn i Grunman (1932 cyt. wg Karrera), którzy stwierdzili, że w dojrzewających owocach pomidora równomiernie przybywa karotenu, natomiast ilość likopenu wzrasta wybitnie dopiero w ostatniej fazie.

W związku z badaniami nad chromoplastami marchwi rozważa Weier (1942) zagadnienie czy twory krystaliczne można nazwać chromoplastami i stwierdza, że nie pozwalają na to, obok różnie morfologicznych także i własności chemiczne (zachowanie się wobec szeregu odczynników). Opisane obserwacje dodają do takiego stanowiska jeszcze jeden argument — genezę kryształów. Kryształy te rosną w plastydach lub obok nich, mogą być więc traktowane najwyżej jako produkty chromoplastów.

Kierownik Zakładu Fizjologii Roślin U. J. Panu Prof. Dr F. Górskiemu składa autor podziękowanie za udzielone rady i wskazówki.

Z Zakładu Fizjologii Roślin Uniwersytetu Jagiellońskiego Kraków
SUMMARY

Changes in quantity and morphological changes of plastids in ripening fruit cells of 4 plant species have been examined. In each of the 4 species experimented with chromoplasts differ fundamentally and are very typical. The development from flower to the fully ripe fruit has been divided into 6 stages (I—VI), easily distinguished by changes in colour, size, and shape. Each of these stages lasts approximately 2 weeks.

The number of plastids is small in ovary cells, but it increases to reach the maximum in stage III. From this point on it remains — within limits of error — unchanged (Fig. 1). Thus statistically there are no divisions and degeneration in the change of chloroplasts into chromoplasts. The absolute number of plastids changes greatly in the different plant species.

Morphological changes of plastids in stages I—III are similar in all examined species. Plastids in ovary cells are small and colourless or very pale green and have no visible inner structure. Gradually the plastids increase in size (fig. 2) and inside them appear green grana, pale and dimly visible at first, they later become distinct. In stage III chloroplasts reach their fullest development. From this stage on chloroplasts begin to change into chromoplasts and the course of this process is different in different species.

Sambucus. Large chloroplasts approx. 5μ in diameter, diminish in size. Their shape round at first becomes ellipsoid or irregular. The granular structure, at first very distinctly visible becomes dim, and the grana from dark green change into yellow green. In this stage injuries easily cause demixing of the lipoid phase which flows out from the plastid. Near the plastid appear then yellow, highly refractive, round drops. In the further stages of this process the plastid shrinks still more and usually becomes almost ball shaped and yellow with a light orange tint. The pigment is placed in round dimly visible grana approx. 0,5μ in diameter. Stroma is highly reduced.

Physalis. During their transformation into chromoplasts the plastids do not change their shape and size. The structure, distinct at first becomes somewhat dim. The plastid becomes pale green. At the same time on the borders of plastids several grains appear, they are highly refractive, intensively orange and approx. 0,5—1,5μ in diameter. The stroma becomes gradually colorless and the number of orange grains increases. They are at first agglomerated in several points on the borders of plastids, later the agglomerations join to form semicircles or rings. The middle of a plastid is the last to be occupied by the orange granules. In ripe chromoplast the pigment is distinctly localized within small grains dispersed evenly throughout the plastid.
Sorbus. Disk shaped chloroplasts with small distinct grana become somewhat ellipsoid. The granular structure becomes less visible. The colour changes from green to yellow green. Some of the grana seem to be larger and of a darker hue than others. Later plastids become spindle shaped and their structure is indistinct. The stroma seems to be evenly coloured, some grana are still visible in it. At this stage injuries easily cause demixing of the lipoid phase which flows out forming by the spindle shaped plastids round, yellow drops. As the fruit ripen the spindle shaped chromoplasts elongate, become sharper at the ends and intensively orange. Their structure is homogeneous or indistictly fibrous (near the visibility limit of the microscope). When plastids change from disk shaped chloroplasts to spindle shaped chromoplasts their volume either remains the same or changes only very slightly. The volume of ellipsoid chloroplasts calculated from average dimensions \((3.2 \times 1.2 = 6.4 \ \mu^3)\) is very similar to that of spindle shaped chromoplasts \((14.8 \times 1.08 = 5.3 \ \mu^3)\).

Solanum. In this species plastids in cells taken from basal parts of the fruit where starch is not accumulated in great quantity have been examined. Solanum chloroplasts have a very distinct sharply outlined, granular structure which dissolves and becomes pale in the course of the development process. Simultaneously small orange grains appear, they are 0.5—1.5 \(\mu\) in diameter and their shape is either round or polygonat. At this stage injuries often cause the vacuolisation of plastids. Latter the plastids become smaller, the stroma becomes colourless and besides the orange grains one or two orange cristals appear. So far no pigment is to be seen outside the plastids. As the fruit ripen in the last stage the orange grains appear also in the cytoplasm, they probably originate from plastids which have dissolved. Besides the yellow orange cristals also pink ones appear, they resemble either scales or strips and are fairly large (20 \(\mu\) in length). Sometimes they are attached to the degenerated plastids but usually they appear separately in the cytoplasm. In ripe fruit plastids are often heaped together and easily can be mistaken for coloured layers of protoplasm.

A common feature in the different types of transformations of chloroplasts into chromoplasts it the decrease in the amount or even the disappearance of chlorophyll and the increase in the amount of yellow pigments. During the transformation of pigments the lipoid phase is very loosely related to the stroma and is easily demixed, which causes either yellow fat drops to flow out from plastids or the vacuolisation of plastids. Even when demixing take place in young Sorbus chromoplasts the stroma remains spindle shaped, which seems to indicate that in this case stroma proteins and not crystalizing pigments are responsiblbe for its shape. During the transformation of plastids the stroma is either great-
ly reduced in volume (Sambucus, Solanum) or its volume and the shape remains unchanged (Physalis) or its structure is completely changed (Sorbus).

LITERATURA

Sambucus. 3 – stage I, 4 – stage II, 5 – stage III, 6 – stage IV, 7 – stage V, 8, 9 – stage VI, 10 – demixing of lipoid phase in stage V.

Physalis. 11 – stage I, 12 – stage II, 13 – stage III, 14, 15 – stage IV, 16, 17 – stage V, 18, 19 – stage VI.
Sorbus. 20 — stage I, 21 — stage II, 22 — stage III, 23 — stage IV, 24, 25 — stage V, 26, 27, 28 — stage VI, 29 — demixing of lipoid phase in stage IV, 30 — demixing of lipoid phase in stage V.

Ryc. 31—42. Solanum. 31 — stadium I, 32 — stadium II, 33 — stadium III, 34, 35 — stadium IV, 36, 37 — stadium V, 38—42 — stadium VI.
Solanum. 31 — stage I, 32 — stage II, 33 — stage III, 34, 35 — stage IV, 36, 37 — stage V, 38—42 — stage VI.