Wpływ pory roku na różnicowanie się kalusa u Hedera helix in vitro

Influence of seasons on differentiation of callus in Hedera helix in vitro

JADWIGA MOLÉ-BAJER

wpt. 23.III.51

Wstęp i metody.

Stosunkowo mało zbadanym problemem jest proces różnicowania się komórek. Hodowla tkanek roślinnych in vitro daje zupełnie nowe metody i pozwala na dokładniejszą analizę tego zjawiska. Metodą tą posługuje się Gioelli (Gioelli 1938) badając zmiany zachodzące w kulturach kambialnych drzew w ciągu wiosny i lata i analizując wpływ ciepłej pory roku na różnicowanie się tkanek. Problem różnicowania się tkanek w jesieni i w zimie nie jest jednak dotychczas zbadany; stwierdzono jedynie, że założenie nowej hodowli w zimie napotyka na duże trudności.

Celem pracy niniejszej było prześledzenie różnicowania się tkanek w jesieni i w zimie oraz zbadanie ich genezy w zależności od pory roku.

W tym celu posłużono się techniką organów miękkich, to zn. hodowlą kalusa, co pozwala na obserwację procesów zachodzących we wszystkich rodzajach tkanek w różnych okresach oraz na wykrycie ewentualnych różnic w ich żywotności i zdolności do wytwarzania nowych komórek.

Jako objektu do badań użyto pędy Hedera helix. Hodowlę zakładano według przepisów G a u t h e r e t a. Posługiwano się czternasta modyfikacjami pożywki polecanej przez Gauthereta (zasadniczy skład pożywki był ten sam, zmienna była ilość sacharozy (20 i 30 g) oraz kw g indolylo-octowego (10^{-8} i 5\times10^{-7} g). Jako środowisko kontrolne służyła pożywka z wyciągiem z drożdży browarnianych (wg. W h i t e a). Tkanki przechowywane były w temperaturze 20—21°C; wilgotność powietrza wynosiła 50%.
Każdorzowo szczepiono 200—400 kultur i we wszystkich wynikach brano pod uwagę średnią.

Jako utrwalacza do tkanek używano płynu N a v a s h i n a oraz utrwalacza C a r n o c y s a. Tkanki zatapiano w parafinie i krojono na 15µ Preperaty barwiono hematoksyliną wg. E h r l i - c h a oraz fioletem gencjanowym z dodatkiem fenolu.

W celu stwierdzenia zmian w błonach komórkowych (przedwczesne korkowacenie) używano metod mikrochemicznych (Zn Cl₂ J, sudan III).

Morfologia kalusa.

W zależności od pory roku i żywotności zaszczerbionego fragmentu pędu *Hedera helix* można wyróżnić kilka typów wzrostu kalusa, co zaznacza się również w jego zewnętrznym pokroju.

W kilka dni po zaszczerbieniu pojawiają się na powierzchni przekroju białe komórki, tworzące luźną tkankę; wzrost ich zaznacza się najintensywniej w obrębie miazgi twórczej. Nowo wytworzony kalusz, pochodzący prawie ze wszystkich tkanek fragmentu macierzystego (w głównej zaś mierze z kambium) pokrywa z czasem całą powierzchnię przekroju, często przechodząc poza epidermis. Tego rodzaju wzrost zachodzi tylko u okazów najsiśniejszych, znajdujących się w optymalnych warunkach rozwoju, które wytwarzają tkankę przyranną w pierwszych dniach po zranieniu (Tabl. I fig. 1).

O wiele częściej ma miejsce druga modyfikacja, polegająca na tym, że jakkolwiek cała powierzchnia pokrywa się początkowo niewymi kamórkami, pierścien w obrębie miazgi formuje się znacznie wyraźniej niż w poprzednim wypadku, rośnie o wiele szybciej od pozostałych tkanek i zalewa całą powierzchnię przekroju. Tworzy się typowy kłobowaty kalusz, posiadający mniej lub więcej wyraźne wglębenie w środku powierzchni pędu. (Tabl. I fig. 2).

Inaczej przedstawia się wzrost u okazów, u których kalusz rozpoczyna się wytwarzać nie w przeciągu czasu charakterystycznego dla gatunku i pory roku, lecz nieco później; pojawia się tu wyłącznie pierścień komórek pochodzących z miazgi twórczej. Kalusz ten z czasem rozrasta się, nie pokrywa jednak prawie nigdy całej powierzchni i nie wykracza nigdy poza obręb miazgi. (Tabl. I fig. 3).

Wreszcie u okazów najsiśniejszych można zauważyć pewne „próby” wzrostu w postaci odosobnionych grudek nowo wytworzonych komórek. Wzrost ten nigdy nie rozprzestrzenia się, lecz zawsze pozostaje zlokalizowany w tym samym początkowym miejscu.
Podobne zjawiska zmiany typów wzrostu można prześledzić po-
swując się od jesieni ku zimie, przy czym typ pierwszy występuje w
jesieni, typ trzeci w zimie. Po pewnym czasie wyrastają u niektó-
rych okazów Heder a Helix korzenie, pędy lub jedne i drugie. (Tabl. I
fig. 2). W ogromnej większości przypadków powstają one ze związą-
ków już poprzednio istniejących. Pojawiają się one w różnych miej-
scach zaszechowych pędów, zarówno w głębi pożywki jak też i w częściami w niej niezanurzonych. Zostaje tu często zachowana
biegunowość to zn., że jeżeli fragment został zaszczepiony w ten spo-
sób, iż jego morphologicznie górna strona pozostaje nią nadal, korzeń
rośnie ku dolowi pęd zaś ku górze, jeżeli zaś morfologicznie dolna
strona staje się teraz górną, korzeń w początkowych stadiach rośnie
ku górze i dopiero potem skierowuje się ku pożywce, a nowy pęd
może przez długi czas rosnąc w dół, w agarze. Zjawisko to jest czę-
ste, jednak nie powszechne. Należy zaznaczyć, że podczas gdy u pę-
dów biegunowość jest prawie zawsze zachowana, korzenie wykazują
większą plastyczność i niejednokrotnie zamiast rosnąć ku górze, kie-
rują się odrażu ku dolowi.

Powstawanie nowych organów z nieróżnicowanej tkanki występuje u Heder a helix bardzo rzadko. Zjawisko to zaobserwowano w nieznacznym tylko procencie przy tworzeniu się korzeni; pędów o podobnej genezie nie stwierdzono.

U Heder a helix nie występuje zaobserwowane przez Ga- t h e r e t a u marchwi zjawisko polaryzacji. W przeciwnieństwie do
marchwi kalus tu rozwija się najsilniej na górnej powierzchni frag-
mentu niezależnie od tego, czy morphologicznie górna strona pozostaje
nią nadal, czy też nie.

Anatomy k a l u s a.

W pierwszych stadiach hodowli oraz później po kilku prze-
szczepieniach nowo wytworzone komórki tworzą tkankę zupełnie
jednorodną. Komórki te nie są jednak elementami zupełnie niezróż-
icowanymi, ich struktura oraz ich charakter mikrochemiczny czynią
je czymś pośrednim pomiędzy parenchymą a tkankami merysystema-
stycznymi. Dlatego też Ga- t h e r e t określa je jako parynychmę
merysystematyczną.

Nieco później kalus wytwarza warstwę twórczą o przebiegu
mniej lub więcej falistym, która odkłada do wnętrza mało zróżnico-
wany mięszk z nielicznymi tylko naczyniami, nie połączonymi jed-
nak z resztą naczyń, na zewnętrzną zaś tkankę jeszcze bardziej jednorodną, gdzie nie napotyka się prawie nigdy prawdziwych rurek sito-
ych i komórek towarzyszących.

Jest to ogólny bardzo uproszczony schemat, pod który jednak można podciągnać wszystkie dotychczas spotykane modyfikacje wzrostu.

U Hedera helix nie ma jednolitego typu wzrostu, kalusz bowiem w zależności od pory roku kształtuje się rozmaicie. W pewnym uproszczeniu można wyróżnić dwie modyfikacje w tworzeniu się i strukturze tkanki przyrannej, pomiędzy którymi istnieje cały szereg przejść. Są to typ zimowy i normalny (jesień, wiosna).

Należy zaznaczyć, że analizowano tylko wzrost odbywający się mniej lub więcej normalnie tzn. dający do pokrycia całej powierzchni przekroju. Nie opracowywano anatomicznie natomiast typu skrajnie zredukowanego.

Typ wzrostu w zimie. Pierwsze oznaki wzrostu zaznaczają się makroскопowo jako uwypuklenie się, wypychanie rdzenia. Tłumaczą to przekroje podłużne. Miażga twórcza zaczyna wchodzić w stadium intensywnych podziałów, podczas gdy wszystkie inne tkanki pozostają jeszcze nieczynne. Komórki w jej obrębie dzielą się w różnych kierunkach i odpychając tkanki nie dzielące się i utrudniające ich rozprzestrzenianie się; z jednej strony odchylają więc część sitową z drugiej zaś naczyniową, która z kolei wypycha rdzeń. Równocześnie i inne tkanki przygotowują się do wzrostu, który musi zostać poprzedzony przez odróżnicowanie danej partii komórek. Zjawisko to można obserwować w rdzeniu, gdzie w tkance macierzystej w pobliżu przekroju tworzy się warstwa twórcza, złożona z kilku szeregów płaskich komórek (Tabl. I fig. 4).

W stadium nieco późniejszym obserwowano wzrost wszystkich tkanek żywych, jednak intensywność podziałów pozostaje nadal nierównomierna. Najsilniej rozwija się kalusz pochodzący z kambium oraz z miażgi korkotwórczej, w ich też obrębie powstaje pewnego rodzaju lokalna miażga twórcza (Tabl. I. fig. 5). W miarę rozwoju kalus ten coraz bardziej rozrasta się, zlewa i pokrywa łącznie z komórkami wytworzonymi przez inne tkanki całą powierzchnię przekroju. Wzrost tego typu jest powolny i stosunkowo regularny, co objawia się w dość prawidłowych kształtach komórek i mało chaotycznym ich rozplanowaniu. Nowo utworzone komórki są małe (także jak komórki tkanki macierzystej) i nie różnicują się zbytnio pomiędzy sobą wymiarami.
Różnicowanie się kalusa 63

Po wytworzeniu nielicznych zaledwie warstw komórki tworzy się już pod powierzchnią warstwa twórcza i ciągle przez cały kalus, łącząc się nie z kambium jak to ma miejsce u marchwi (G a u t h e r 1942, 1945), lecz z fellogenem fragmentu macierzystego (Tabl. I fig. 6). Warstwa ta, złożona z płaskich komórek ustawionych w płaszczyźnie, ma przebieg bardzo prawidłowy. Ma ona charakter fellogenu i odkłada nazewnąciu cienkościenną komórki o korkowaczących jednak następnie błonach. Równocześnie można stwierdzić odkładanie się suberyny na błonach w obrębie samej miazgi twórczej. Odbywa się to prawdopodobnie dopiero wtedy, gdy miazga twórcza przestaje się dzielić i wytworzony kalus już nie wzrasta.

Jest interesujące, że już bardzo wcześnie tworzą się gniazda zdegenerowanych naczyń, zwłaszcza w pobliżu części przewodowej tkanki macierzystych. Naczynia te składają się z kilku członów lub i komórek pojedynczych i tworzą zazwyczaj charakterystyczne gniazda. Odróżniają się one od innych komórek zgrubieniem błon i typową rzeźbą.

Zbliżając się ku okresowemu spoczynku, jak już zaznaczono, szereg tkank traci zdolność podziałów i w wytwarzaniu kalusa biora udział coraz wyłączniej kambium i fellogen. Obraz w ten sposób wytworzonej tkanki przedstawia fig. 8. Tabl. I.

W z r o s t n o r m a l n y. Wzrost ten różni się już początkowy od najwcześniejszych stadiów od poprzedniego. Wszystkie tkanki fragmentu macierzystego zaczynają wytworzyć równocześnie nowe komórki i to z mniej więcej jednakową intensywnością. Nowo uformowane komórki są duże, większe od komórek tkanki macierzystej. Posiadają one kształty nieregularne i są silnie zwakuolizowane. Podziały następują szybko jeden po drugim we wszystkich kierunkach. Na skutek szybkiego, chaotycznego wzrostu komórki posiadają różne wielkości i są bezładnie rozłożone. (Tabl. I fig. 10). W stadiach odpowiadających wiekiem pierwszemu typowi wzrostu, gdzie jest już warstwa twórcza całkowicie wykształcona, a odznaczających się silnie rozwiniętym, dużym kalusem, nie ma jeszcze zupełnie śladów, z których można by wnioskować o jej powstaniu w niedługim czasie (Tabl. I fig. 11).

Dopiero stosunkowo bardzo późno zaczynają się różnicować w obrębie kalusa poszczególne pasma i gniazda merystatyczne (Tabl. I fig. 12, 13). Są one jednak rozrzucone wśród tkank bez prawdopodobieństwa, głębiej lub bliżej powierzchni; na ogół jednak są znaczenie głębiej położone niż miazga twórcza o charakterze fellogenu w po-
przednio omówionym typie wzrostu i nigdy nie łączą się ze sobą. Pasma te wytwarzają ku dołowi, względnie w wypadku pierścienia ku wnętrzu, gniazda zdegenerowanych naczyń (Tabl. I, fig. 9, Tabl. II, fig. 15). Zdarza się jednak także, że naczynia są odkładane na zewnątrz od miażgi.

Komórki kallusa podobnie jak komórki fragmentu macierzystego zawierają druży szczawiianu wapnia.

Oba typy wzrostu różnią się więc od siebie zasadniczo. Głównym czynnikiem wywołującym odmienne kształtowanie się kalusia jest niewątpliwie różna szybkość wzrostu, spowodowana najprawdopodobniej porą roku.

Fizjologia wzrostu.

Od dawna wiadomo, że czas, w którym zaczyna na powierzchni przekroju pojawiać się nowa tkanka, zależy jest od techniki, którą się posługiwano, przede wszystkim zaś od gatunku rośliny. Zazwyczaj większość część zaszczepionych fragmentów zaczyna wytwarzać kalus już w pierwszych dniach po założeniu hodowli i w tym samym czasie, to też na tej podstawie można w przybliżeniu określić liczbę rosnących kultur. Tym też posługiwano się przy obliczaniu % okażów rosnących i czasu ich wyrastania.

Z badań nad wzrostem kalusa u *Hedera helix* okazało się, że czas pojawiania się nowej tkanki zależy od miesiąca szczepienia i ulega w ciągu roku dużym wahaniom, co wynika z załączonej tabeli oraz wykresu I.

<table>
<thead>
<tr>
<th>Czas szczepienia</th>
<th>Czas wyrastania</th>
<th>Ilość dni</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.IX.49</td>
<td>4.X.49</td>
<td>7</td>
</tr>
<tr>
<td>24.X.49</td>
<td>31.X.49</td>
<td>7</td>
</tr>
<tr>
<td>12.XI.49</td>
<td>21.XI.49</td>
<td>9</td>
</tr>
<tr>
<td>19.XI.49</td>
<td>28.XI.49</td>
<td>9</td>
</tr>
<tr>
<td>24.XI.49</td>
<td>5.XII.49</td>
<td>11</td>
</tr>
<tr>
<td>3.XII.49</td>
<td>17.XII.49</td>
<td>14</td>
</tr>
<tr>
<td>12.XII.49</td>
<td>27.XII.49</td>
<td>15</td>
</tr>
<tr>
<td>19.XII.49</td>
<td>5.I.50</td>
<td>17</td>
</tr>
<tr>
<td>15.I.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.II.50</td>
<td>23.II.50</td>
<td>20</td>
</tr>
<tr>
<td>18.II.50</td>
<td>27.II.50</td>
<td>9</td>
</tr>
<tr>
<td>3.III.50</td>
<td>13.III.50</td>
<td>10</td>
</tr>
<tr>
<td>22.III.50</td>
<td>31.III.50</td>
<td>9</td>
</tr>
<tr>
<td>23.IV.50</td>
<td>30.IV.50</td>
<td>7</td>
</tr>
</tbody>
</table>
Szybkość pojawiania się kalusa utrzymuje się przez miesiące jesienne na równym poziomie, po czym następuje w listopadzie i w grudniu dość raptowny spadek, prowadzący do stanu zupełnego spoczynku w styczniu. Powrót do stanu czynnego i z tym związanej zdolności wytwarzania tkanki przyrannej następuje stosunkowo szybko; już w lutym wytwarza się kallus i to po krótkim czasie dziewięciu dni.

Fig. 1. Czas rozpoczęcia wzrostu kultur w zależności od miesięcy
Time of growing cultures in different seasons

Fig. 2. Ilość rosnących kultur od czasu założenia hodowli (w dniach) w zależności od pory roku
The number of growing cultures (in days from starting the culture) in different seasons.
W parze z porą roku idzie też zmniejszenie się, względnie wzmaganie żywotności nowo wytworzonej tkanki. Wynika to z wykresu, który pokazuje zdolność do wytwarzania kalusa w zależności od pory roku. Zdolność ta jest zupełnie inna wczesną jesienią i wiosną niż w zimie. W pierwszym wypadku w miarę upływu czasu coraz więcej kultur zaczyna rosnąć, podczas gdy w zimie z okazów wyrosłych w pierwszych dniach pozostaje przy życiu coraz mniejsza ilość — nowe nie wyrastają, a rosnące obumierają. (stąd inne nachylenie krzywych wzrostu zimowego i wiosennego).

Wpływ porów roku zaznacza się również na ilości rosnących okazów oraz na czasie odkładania korka. Procesy te są mniej więcej do siebie równoległe, co ilustruje poniższe zestawienie oraz wykresy 3 i 4.

Fig. 3. % rosnących kultur w zależności od miesięcy.
% of growing cultures in different seasons.

Fig. 4. Czas korkowacenia kultur w zależności od miesięcy.
The time of cork formation on cambium during the year.
Różnicowanie się kalusa

Analogicznie jak przy czasie wyrastania kalusa w zależności od pory roku następuje tu także dość gwałtowny spadek i szybkie wznoszenie się w górę, co odnosi się zarówno do % rosnących kultur jak i do szybkości korkowacenia.

Stosunki panujące przy kształtowaniu się tkanki przyrannej w ciągu roku wykazują pewne podobieństwo do zjawisk zachodzących przy tworzeniu się kalusa na przestrzeni szeregu dni. W zależności od czasu pojawiania się kalusa pochodzi on ze wszystkich tkanek zaszczeplonego fragmentu, względnie jest pochodzenia wyłącznie kambialnego, a w końcu jest wytworzony tylko przez partie miałgi. W związku z tym idzie zanik żywości i wczesne korkowacenie.

<table>
<thead>
<tr>
<th>Czas szczepienia</th>
<th>% rosnących</th>
<th>Czas korkowacenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.IX.49</td>
<td>90</td>
<td>2 miesiące</td>
</tr>
<tr>
<td>24.X.49</td>
<td>90</td>
<td>2 miesiące</td>
</tr>
<tr>
<td>12.XI.49</td>
<td>80</td>
<td>1,5 miesiąca</td>
</tr>
<tr>
<td>19.XI.49</td>
<td>80</td>
<td>1,5 miesiąca</td>
</tr>
<tr>
<td>24.XI.49</td>
<td>25</td>
<td>1 miesiąc</td>
</tr>
<tr>
<td>3.XII.49</td>
<td>5</td>
<td>2 tygodnie</td>
</tr>
<tr>
<td>19.XII.49</td>
<td>3,5</td>
<td>kilka dni</td>
</tr>
<tr>
<td>15.I.50</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>18.I.55</td>
<td>10</td>
<td>1 miesiąc</td>
</tr>
</tbody>
</table>

Wykresy obrazujące % rosnących okazów i korkowacenie w zależności od pory roku są bardzo podobne, prawie że równolegle. Wskazuje na to fakt, że miarą żywości nowo utworzonych tkanek w czasie różnych pór roku może być zarówno % rosnących okazów, jak i czas ich korkowacenia. Procesy te muszą być więc ze sobą ścisłe powiązane, co objawia się w tym, że czym tkanka później korkowacjie, tym jest bardziej żywota i vice versa.

Dyskusja.

Przyczyny procesu różnicowania się komórek są najczęściej nieznane. Metodą fizjologiczną badań nad tym problemem jest właśnie hodowla tkanek in vitro. Jest to możliwe dlatego, ponieważ istnieje antagonizm pomiędzy podziałami, a różnicowaniem się komórek. Wytwarzanie skrobii, taniny oraz innych produktów w czasie intensywnego wzrostu ustaje, a nawet zanika chlorofil. Przeciwnie zaś wstrzymanie wzrostu pobudza niejako zdolności wytwórcze komórek, które teraz produkują chlorofil, skrobię i inne produkty metabolizmu.
W czasie różnych pór roku i w zależności od nich zdolność różnicowania się komórek jak też i kierunek tych procesów ulega zmianom.

Pierwsze tego rodzaju badania wykonał Gioelli (Gioelli 1938). Wykazał on, że w kulturach kambialnych drzew zachodzą zależnie od pory roku wybitne różnice w kształtowaniu się nowych tkanek. Fragmenty kambium zaszczepione na wiosnę różnicują się słabo w przeciwnieństwie do lata, kiedy dyferencjacja następuje bardzo szybko, tworzy się system elementów przewodzących i kultura przestaje się rozwijać.

Zachowanie się tkanek w czasie późnej jesieni oraz zimy pod tym względem nie zostało zbadane. Metoda stosowana przez Gioelli e g o nie mogła dać pełnych wyników, ponieważ pozwalała na zbadanie zachowania się tylko tkanki jednego rodzaju i to tkanki najbardziej żywotnej i posiadającej nieograniczone zdolności różnicowania się. Dopiero hodowla typu organów miękkich umożliwia zbadanie tych procesów dla wszystkich rodzajów tkanek.

Badania nad Hedera helix wykazują, że można tu wyróżnić trzy fazy rozwoju od późnej jesieni do wiosny.

Pierwsza z nich przypada na okres między wczesną a późną jesienią i jest analogiczna do fazy wiosennej. Występuje tu zupełnie normalny wzrost kalusa w mniej więcej jednakowej mierze ze wszystkich tkanek. Przez długi czas nowo wytworzone tkanka pozostaje jednorodna i żywotna. Jest to wynikiem szybkiego wzrostu nie pozwalającego na różnicowanie się komórek. Zdolność dzielenia się posiadają tu przez długi okres prawie wszystkie nowowytworzone komórki, w fazach zaś późniejszych tworzy się duża ilość pasm i gniazd merysystematycznych nierównomiernie rozłożonych. Na skutek ich działalności tworzy się kalus o nieregularnych kształtach.

Drugi okres obejmuje wczesną zimę i wczesną wiosnę. Kalus wytwarza się, lecz przy produkowaniu go główną rolę odgrywa kambium i fellogen (inne tkanki również współdziałają lecz w małej mierze). Szybko następuje różnicowanie się to zn. odkładanie się korka na nowo wytworzonych komórkach. Tendencja ta odzwierciedla się w anatomii kalusa, gdzie nowo wytworzona miążga twórcza łączy się z fellogenem tkanki macierzystej i sama posiada charakter fellogenu.

Trzecią fazą jest okres zupełnego zastąpienia wzrostu — okres spoczynku. Trwa on stosunkowo krótko (styczeń). Pomiędzy tymi fazami istnieją ciągłe przejścia.
Różnicowanie się kalusa

Nie wszystkie tkanki są jednakowo żywotne. Najdłużej i najbardziej czynne jest kambium. Również długo zachowuje zdolność wzrostu fellogen. Żywość kambium widać także w tym, że wzrost zimowy, w którym bierze udział właściwie tylko kambium, wykazuje analogię ze wzrostem normalnym lecz u tych okazów, które najpóźniej rozpoczęły wzrost.

Spoczynek zimowy jest więc spowodowany przede wszystkim zastojem w obrębie kambium.

Resumując wyniki tej pracy z wynikami badań Gioelleego można stwierdzić, że w ciągu całego roku działają dwie przeciwstawne tendencje: 1. do szybkich podziałów komórkowych, 2. do różnicowania się komórek. W zależności od pory roku przeważa raz jedna, raz druga. W związku z tym istnieją dwa różne okresy różnicowania się komórek: 1. w lecie występuje tendencja do wytwarzania pędów, 2. w zimie zaś do korkowacenia kalusa. Pomiędzy tymi dwoma okresami istnieją dwa przejściowe okresy intenzywnych podziałów komórkowych, przy czym wytworzony kalusz pozostaje przez dłuższy czas niezróżnicowany. Ma to miejsce w jesieni i na wiosnę. Krzywa wzrostu kalusa posiada więc dwa maxima, jest więc krzywą dwuwierzchołkową.

Występuje to niewątpliwie w związku z regeneracją organizmu w lecie, względnie z zabezpieczeniem przed mrozem w zimie. W pewnych okresach granicznych jedna z obu tendencji już, druga zaś jeszcze nie odgrywa roli i wtedy właśnie szybko wyrasta obfit od jasło. Jest to być może uwarunkowane ruszaniem soków na wiosnę i magazynowaniem materiałów w jesieni. Odgrywałyby tu więc rolę substancje wzrostowe.

S t r e s z c z e n i e

Hedera helix wykazuje duże wahania roczne we wzroście kalusa. W różnicowaniu się tkanek można wyróżnić trzy fazy:

1. faza szybkiego wzrostu niezróżnicowanej tkanki (wiosna, wczesna jesień).

2. faza powolnego wzrostu z tendencją do odkładania korka (późna jesień, wczesna zima).

3. okres spoczynku.

Praca ta została wykonana w Zakładzie Fizjologii Roślin U. J. Pragnę na tym miejscu podziękować prof. Dr F. Górskiemu za umożliwienie jej wykonania i życzyliwy stosunek oraz Dr. J. Czosnowskiemu za cenne wskazówki i liczne chemikalia.
SPIS LITERATUREY

Gautheret, R. J. 1945. La culture des tissus, Gallimard, str. 203.

SUMMARY.

The purpose of this work was to examine the growth and differentiation of Hedera helix callus in vitro in autumn, winter and spring.

Gautheret's soft tissue technics were chosen and following results were obtained:

Between autumn and spring in the growth of Hedera helix callus, three main phases of developement may be distiguished.

1. The first phase is between early and late autumn and it resembles the spring phase. The growth of the callus is normal and it grows equally (approximately) on all tissues. Grown up tissue remains uniform and alive a long time. It is the result of rapid growth which does not allow the differentiation of the cell. The ability of divisions is retained by all callus cells during a considerable time, and in later stages numerous irregularly spaced meristematic layers are formed. As a result of the activity of these layers irregularly shaped callus grows.

2. The second phase is early winter and early spring. As the result of cambium and phellogen activity callus is formed. The cambium produced resembles phellogen and joins with it.

3. In the third phase growth stops completely, and this is the winter rest. Between these phases there is continuous transition.

4. Not in all the tissues the vitality is uniform. The activity of cambium last longest and is most pronounced. It was confirmed also that phellogen retains its ability of division a considerable time. Winter rest is caused mainly by lack of cambium activity.

5. A similar periodical activity appears also in the growth of callus i. e. its vitality varies in spring depending on whether the production of callus is normal or slightly retarded.
OBJASNIENIA TABLIC — EXPLANATION OF TABLES

TABLICA I — TABLE I

Fig. 1. Kallus, który powstał ze wszystkich tkanek w jednakowej mierze.
 Callus equally grown from all tissues.

Fig. 2. Kallus, który powstał głównie z miażgi twórczej. Centralna część pędu
 pokryta cienką warstwą nowoutworzonej tkanki. Widoczny korzeń wyrasta-
 jący z pędu.
 Callus grown mainly from cambium. In central part of the twig thin layer
 of new tissue. Visible root growing from the twig.

Fig. 3. Pierścień kallusa wytworzony przez kambium.
 Callus ring formed by cambium.

Fig. 4. Pierwsze stadium wzrostu zimowego.
 First stage of winter growth.

Fig. 5. Drugie stadium wzrostu zimowego.
 Second stage of winter growth.

Fig. 6. Trzecie stadium wzrostu zimowego.
 Third stage of winter growth.

Fig. 7. Warstwa twórcza o charakterze fellogenu i przez nią wyprodukowane
 skorkowaciale komórki.
 Mertistematic layers resembling phellogen and cells produced by it. In callus
 calcium oxalate crystals are visible.

Fig. 8. Przekrój podłużny przez kallus wytworzony prawie wyłącznie przez
 kambium.
 Longitudinal section of callus grown almost exclusively from cambium.

Fig. 9. Grupy nieprawidłowych naczyń.
 Groups of abnormal vessels placed near mother tissue.

TABLICA II — TABLE II

Fig. 10. Pierwsze stadium wzrostu normalnego.
 First stage of normal growth.

Fig. 11. Drugie stadium wzrostu normalnego.
 Second stage of normal growth.

Fig. 12. Trzecie stadium wzrostu normalnego.
 Third stage of normal growth.

Fig. 13. Tworzenie się pasm merystematycznych.
 Formation of meristematic layers.

Fig. 14. Gniazdo merystematyczne.
 Meristematic nest.