MARIA MACIEREWICZ-STRĄCZYŃSKA
(Zakład Fizjologii Roślin U. J. P.).

DZIAŁANIE TEMPERATURY I pH NA KIEŁKOWANIE SPOR BAKTERII.

(Wirkung von Temperatur und pH auf die Keimung von Bakteriensporen).

Wstęp.

Zagadnienie poruszone w tej pracy przekracza szczupłe jej granice. Istota bowiem sprawy polega na pytaniu, czym jest kielkowanie spor?

Ogólnie znany jest fakt, że spory bakteryj w sprzyjających warunkach kielkują, tworząc młode formy wegetatywne. Zjawisko to zaczyna się od pobrania wody, co wyraża się w napęcznieniu spory, powiększeniu się więcej jej objętości, i przez to zmniejszeniu stopnia łamliwości światła. Zewnętrzna błona sporowa, exina, nie jest jednolita — posiada miejsca mniej zgrubiałe t. zw. pory. W tych to punktach najmniej wytrzymały na nacisk pęczniejącej plazmy przypuszczalnie następuje pęknięcie błony sporowej podczas kielkowania (n. p. u B. Bätschli stwierdzono zostało istnienie pory polarej). W zależności od położenia pory kielkowanie może być polarne, bipolare, ekwatorialne, lub też pośrednie, typ podkowiasty (Goetheil, Holzmüller, Omieliańska). Wreszcie jak u B. leptosporus, (Migula) kielkowanie zachodzi bez rozrywania błon, ograniczając się do pęcznienia, wydłużenia się spory i tracenia zdolności silnego zalamywania światła. Sposób kielkowania spor uznany jest jako cecha stała, która służy do klasyfikacji bakterii.

Nie brak również prac cytologicznych, sięgających głębiej w przemiany, zachodzące w sporze podczas jej kielkowania (Neumann, Ruzicka, Preisz, Mencl).
Wszystkie te jednak dane morfologiczne nie mówią nic o warunkach, w których spory kiełkują.

Ogólnie wymienia się: wystarczającą ilość substancji pożywych a przede wszystkim wody, odpowiednie ciśnienie osmotyczne, temperaturę, odpowiednie stosunki tlenowe — jako warunki potrzebne dla kielkowania.

Interesującą jest rzeczą, jaka istnieje współzależność między warunkami: kielkowania, rozwoju wegetatywnego oraz tworzenia się spor?

W literaturze spotykamy bardzo mało badań systematycznych, przeprowadzonych w tym kierunku.

Blau (1905) określił dla całego szeregu bakterii sporowych ziemnych maksymalną temperaturę kielkowania, wzrostu i tworzenia spor.

Z jego danych wynika, że na ogół temperatura maksymalna wzrostu leży wyżej niż temperatura maksymalna tworzenia spor. (Wygłatek stanowi B. alvei, u którego maksymalna temperatura kielkowania jest niższa od maksymalnej temperatury tworzenia spor.).

Maksymalna temperatura kielkowania jest na ogół równa lub niższa od maksymalnej temperatury wzrostu, (z wyjątkiem B. asterosporus i B. sphæricus, u których maksymalna temperatura kielkowania jest wyższa od maksymalnej temperatury wzrostu).

Z badań Holzmüller (1909) wynika, że optima temperatury dla kielkowania, wzrostu i tworzenia spor są jednakoowe. Minimum — jest najwyższe dla tworzenia spor a najniższe dla kielkowania — maksimum najwyższe dla kielkowania — najniższe dla tworzenia spor. Daranyi (1930) również stwierdza, że wytwarzanie spor wymaga węższych granic temperatury niż rozwój danych bakterii. Wund (1906), Engberding (1909) i Holzmüller podają, że dla aerobowych bakterii wymagania tlenowe przy kielkowaniu i wzrostu bakterii są mniej więcej równe, w okresie zaś tworzenia spor — większe. Z doświadczeń Holzmüller wynika także, że granice koncentracji pożywki dla kielkowania spor są szersze niż dla wzrostu danych bakterii. Przy czym autor uważa, że dla kielkowania małe znaczenie ma rodzaj pożywki — a głównie chodzi o odpowiednie ciśnienie osmotyczne. Itano i Neill (1918-19), badając wpływ temperatury i pH na cykl rozwojo-
wy B. subtilis, stwierdzili, że dla kielkowania spor istnieją szersze granice pH niż dla rozwoju, oraz szersze granice temperatury niż dla tworzenia spor.

W granicach temperatur 25° — 37°C (gdy 25°C jest bliskie optimum kielkowania) zmiany temperatury wpływają mniej na szybkość kielkowania niż zmiany pH. Krzywe dla tych dwóch temperatur są tylko nieco przesunięte względem siebie. Autorzy wprawdzie nie wyciągają tego wniosku, ale wynika on jasno z tablic i wykresów.

Badania wyżej przyczczane rzucają nieco światła na warunki fizyczne procesu kielkowania spor, ale nie wyjaśniają, które z czynników koniecznych mają najbardziej pobudzający charakter oraz jakie jest wzajemne ustosunkowanie tych czynników.

Badania własne

Cel pracy.

Zadanie niniejszej pracy ograniczało się do prześledzenia: 1) działania temperatury i pH na kielkowanie spor, w porównaniu do wpływu tych czynników na rozwój wegetatywny, oraz 2) jaki wpływ wywiera pH środowiska na odporność spor ogrzewanych w 100°C.

Materiał.

Jako materiału do badań użyłam czterech gatunków bakterii:

1) Bacillus cepae K. Bassalik et R. Edelsztein.
2) Pałeczka Nr. 8.
3) Pałeczka Nr. 27. wyizolowane z gleby ogrodu

Pałeczka Nr. 8 i 27 są prawdopodobnie formami blisko spokrewnionymi. Morfologicznie różnią się tylko kształtem kolonii na szalce agarowej oraz cokolwiek wielkością form wegetatywnych i spor.

Fizjologicznie odchylienia są minimalne — dotyczą tylko kielkowania w rozmaitych temperaturach i pH. Największa różnica zaznaczyła się między nimi podczas badania wpływu ciężkiej wody na kielkowanie spor.

Pałeczka Nr. 26, podobna nieco z kształtu kolonii do Nr. 27, wykazuje znaczne różnice fizjologiczne.
Charakterystyka badanych bakteryj.

OPIS BAKTERII NR 8.

Pałeckie o lekko zaokrąglonych końcach. Występują pojedynczo, podwójnie, najczęściej jednak w regularnych łańcuchkach.

Wymiar ich wynosi:

za życia na pożywce płynnej niebarwione średnia 4,07 μ - 8,15 μ x 1,40 μ - 1,55 μ
5,46 μ x 1,46 μ
Pożywka płynna, bakterie barwione 2' na goraco błękitem metylenowym średnia 2,33 μ - 4,66 μ x 1,16 μ - 1,37 μ
3,63 μ x 1,25 μ
Agar, bakterie barwione 2' na goraco błękitem metylenowym średnia 3,20 μ - 4,07 μ x 1,16 μ - 1,55 μ
3,69 μ x 1,32 μ
Agar, bakterie ze sporą barwione 2' na goraco błękitem metylenowym średnia 3,49 μ - 4,66 μ x 1,34 μ - 1,75 μ
4,07 μ x 1,53 μ

Palki zawierają liczne ziarniostości, silnie łamiące światło
Ruchliwy w oś nośna na agarze i w wodzie peptonowej z cukrem ruchliwe tylko przez 3-6 godzin od zaszczerpnięcia.

Sporę na agarze w 30°C zaczynają się tworzyć już po 12 godzinach. Są owalne, nieco przesunięte w jeden koniec palki.
Wielkość spory niebarwionej: 1,55 μ - 1,75 μ X 0,87 μ - 0,93 μ.
Kiełkują polarnie. Optimum kiełkowania spor: 30°C; pH 7,0.

Agar nakluty: Wzduł nakłucia rośnie słabo, na powierzchni wytwarza kolonie podobną jak na szalcie.

Żelatynowe szaliki. (12% żelatyny, 1/2% peptonu, 2% glukozy na wodzie wodociąg) Kolonie szarce, kształtu promieniście rozchodzącej się rozety. Po 2 dniach żelatyna na szalkach kompletnie rozpuszczona w temperaturze pokojowej.

Żelatyna nakluta: Rośnie wzdłuż nakłucia, tworząc charakterystyczne korzonkowane wypustki. Na powierzchni tworzy kożuszek o sfaldowanym brzegu. Żelatynę rozrzeda wolno. W temperaturze pokojowej w ciągu 10 dni kolonie o średnicy 5 — 7 mm. Kożuszek w miarę rozrzedzania się żelatyny opada równomiernie. Żelatyna rozrzedzona warstwowo.
Woda peptonowa 1%: Zmęczenie silne, bardzo słaby, pierścieniowaty kożuszek, opadający na dno. Pałeczki zachowują ruchliwość dłużej niż na pożywce z cukrem.

Woda peptonowa Wittego: 1% gruby kożuszek, różowo zabarwiony. Indolu nie tworzy.

Mleko: Lakmus odbarwia się dopiero po upływie 3 dni. Mleko ścieような, peptonizacja widoczna po 48 godz. od zaszechnięcia.

Początkowo lekkie zakwaszenie (po 3 dniach z pH 6,7 — na pH 6,4) następnie słaba alkaliczacja (po 11 dniach pH 7,3).

Azotany: redukuje (Wzrost na samych azotanach z cukrem nader słaby). Żadnego alkoholu, cukru ni glukozydu nie fermentuje, nie wytwarza gazu.

Zakwasza: glukozę, fruktozę, galaktozę, maltzę, sacharozę, dekstrynę, glierynę.

Skrobi nie hydrolizuje.

Spory wytrzymują: ogrzewanie w 100°C: na agarze o pH 7,0: 61° — 65° pH 5,0: 6°h — 7°h pH 8,0: > 2°h 40%

OPIS BAKTERII NR 27.

Podaje tylko cechy, różniące ją od pałeczki Nr 8.

Wielkość pałek:
Pożywka płynna, bakterie niebarwione: 2,72 — 5,82 x 1,16 — 1,55 μ
” , , barw. blęk. met. 2°: 3,28 — 4,36 x 1,16 μ
Agar, bakterie barwione blęk. met. 2° na gorąco: 4,45 — 9,08 x 1,16 μ
” ” ze spora ” ” ” ” 2,78 — 3,59 x 1,40 — 1,75 μ
Wielkość spory niebarwionej 1,55 — 1,75 x 0,87 — 0,93 μ

Usiłowano zidentyfikować opisane bakterie Nr 8 i 27 ze znanymi bakteriami sporowymi. Posługiwano się w tym celu kluczami: Bergey'a oraz Lehmana i Neumann'a jak również pracami oryginalnymi (Fischöder, Gotttheil, Holzmüller, Eckelmann, Neide, Soule).

Nie zdolano znaleźć opisanych bakterii identycznych; pałeczki Nr 8 i Nr 27 są najbardziej zbliżone do grupy B. anthracis, ewentualnie do B. anthracoides Hüppe.

Podaje zestawienie cech charakterystycznych dla B. anthracis i B. anthracoides, pałeczki Nr 8 i Nr 27.
<table>
<thead>
<tr>
<th>Wielkość palki:</th>
<th>B. anthracis</th>
<th>B. anthracoides</th>
<th>B. Nr 8</th>
<th>B. Nr 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1,2 x 5 - 10 μ</td>
<td>1,1 - 1,5 x 2,3 - 8 μ</td>
<td>idem</td>
<td>idem</td>
<td></td>
</tr>
<tr>
<td>Wielkość spory:</td>
<td>Centralne</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ułożenie spory:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gram:</td>
<td>Rozrzedzają lejko-</td>
<td>idem</td>
<td>idem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kowato lub war-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stwowo. Wzrost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drzewkowaty z ko-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rzonkowatymi wy-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pumpstkami.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Żel. nakłuta:</td>
<td>u wszystkich czte-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rzych równo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar skoszony:</td>
<td>idem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szalka agarowa:</td>
<td>idem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulion mięsny:</td>
<td>Zmętnienie klacz-</td>
<td>Początk. zmętn.,</td>
<td>Zmętn. począt. jedno-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kowate, kożuszek</td>
<td>następnie wyjaśnie-</td>
<td>lite, następnie klacz-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>niewyraźny, żółta-</td>
<td>nie, wytworzenie</td>
<td>kowate, b. słaby kożu-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wy osad.</td>
<td>blokowanego ko-</td>
<td>szek pierścieniowaty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>żuszka.</td>
<td>(na peptonie Witte'a</td>
<td></td>
</tr>
<tr>
<td>Mleko:</td>
<td>Lekkie zakwasz.</td>
<td>Lekkie zakw. koagul.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>koagulacja, peptoni-</td>
<td>pepton. wtórna lekka</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zacja.</td>
<td>alkaliz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kartofel:</td>
<td>Nalot białow-</td>
<td>Początk. suchy popiel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kremowy</td>
<td>nalot nast. kremowo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>różowawy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indol:</td>
<td>nie</td>
<td>nie</td>
<td>nie</td>
<td>nie</td>
</tr>
<tr>
<td>Redukcja azotan:</td>
<td>nie</td>
<td>nie</td>
<td>tak</td>
<td></td>
</tr>
<tr>
<td>Zakwasz. cukrów:</td>
<td>Glukoza</td>
<td>?</td>
<td>Glukoza, frukt, gal-</td>
<td>t. s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lakt, dextr, sachar,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maltzoa, gliceryna</td>
<td></td>
</tr>
<tr>
<td>Hydroliza skrobii:</td>
<td>nie</td>
<td>nie</td>
<td>nie</td>
<td>nie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stosunek do O₂:</td>
<td>Fakult. anaerob</td>
<td>t. s.</td>
<td>t. s.</td>
<td>t. s.</td>
</tr>
<tr>
<td>Opt. temp. wzrostu</td>
<td>37 - 38⁰ C</td>
<td>t. s.</td>
<td>42⁰ C</td>
<td>t. s.</td>
</tr>
<tr>
<td>Kielkowanie:</td>
<td>Polarne</td>
<td>t. s.</td>
<td>Polarne</td>
<td>t. s.</td>
</tr>
<tr>
<td>Ruchliwość:</td>
<td>Nieruchliwe</td>
<td>Ruchliwe w młodych</td>
<td>Ruchliwe w młodych</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kulturach.</td>
<td>kulturach.</td>
<td></td>
</tr>
<tr>
<td>Wygląd palki:</td>
<td>Końce równo ucię-</td>
<td>Końce zaokrągl.,</td>
<td>Końce zaokrągl., kap-</td>
<td>t. s.</td>
</tr>
<tr>
<td></td>
<td>te (u niektórych za-</td>
<td>kapsułki, ziar-</td>
<td>psułki brak, ziares-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>okrągłe) kapsułka,</td>
<td>nistości.</td>
<td>ntości.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ziarńistości.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Środowisko:</td>
<td>Patologiczny</td>
<td>Apatologiczny</td>
<td>Przypuszczalnie apa-</td>
<td>t. s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>togeniczny, gleba.</td>
<td></td>
</tr>
</tbody>
</table>
OPIS BAKTERII NR 26.

Paleczki o zaokrąglonych końcach, pojedyńcze, w parach lub łańcuszkach, czasem bardzo długich. Komórki łatwo tracą normalne kształty, stają się nieforemne i tworzą nierówne łańcuszki. Mocno ziarniste, przy czym ziarnistości, silnie załamujące światło, pojawiają się w komórkach wcześnie; nie dały się te ziarnistości zidentyfikować ani jako glikogen ani wolutyna. Odznacza się tym, że barwia się doskonale fuksyną karbolową i następnie odbarwiane 5% H₂SO₄, zachowują się jak spory — t. j. nie odbarwiają się (są więc kwasoodporne").

Wielkość paleczki:
Pożywna płynna: bakterie niebarwione: 3,49 — 5,82 x 1,40 — 1,55 μ.
" " " barwiony błąk. met. 2': 2,33 — 4,16 x 1,16 μ.
Agar, bakterie barwione błąk. met. 2' na gorąco: 2,91 — 3,88 x 0,93 — 1,16 μ.
" " silnie zwakulizowane na gorąco: 2,91 — 5,82 x 1,16 — 1,5 μ.

Ruchliwość: na agarze lub wodzie peptonowej z cukrem ruchliwość tracą szybko, w ciągu 6 godzin po zaszczerbieniu.

Spory owalne, przesunięte troche ku jednemu końcowi paliki.

Wielkość spory: 1,40 — 1,75 x 0,93 — 1,16 μ.

Optimum kielkowania spor: 37°C pH 7,0, kielkowanie polare.

Optimum rozwoju form wegetatywnych: 37°C, pH 8,0.

Maksimum rozwoju form wegetatywnych: 42°C przy pH 7,0, pH 5,0 i pH 8,0.

Aerobiowe, Gram negatywne.

Na szalkach z agarem zwykłym: Kolonia szara, bezbarwna, o brzegu nierównym, utworzona jakby z wielu bardzo drobniklikich kolonii ułożonych w poplatane szeregi. Środek nieco wypukły; pod obiektywem Nr 3 ma barwę szarą srebrzystą. Na brzegu tworzy charakterystyczne rozwidlone wypustki. Kolonie wyrastają już po kilkunastu godzinach.

Agar skoszony: W środku wygląd kolonii podobny do kolonii na szalkach; w środku tworzy się nieco grubsza warstwa, brzegi nierożone, złożone z bardzo wielu drobnych kolonii, tworzących niesymetryczne wypustki.

Agar nakluty: Wzdłuż naklucia rośnie słabo.

Żelatynowe szalki: Kolonia promieniasta, szaro-mleczna; żelatyna rozrzedzona silnie już po 24 godzinach.

Żelatyna nakłucia: Rośnie wzdłuż naklucia, tworząc charakterystyczne koronkowe wypustki. Na powierzchni rośnie w postaci talerzyka o falistym brzegu; żelatynę rozrzedza warstwą: rozrzedzanie zaczyna się po 48 godz. (w temp. pokojowej), postępuje wolno.

Woda peptonowa 1%: Zmęczenie silne. Kożuszek pierścieniowy, bardzo szybko opadający na dno. Paliki zachowują ruchliwość dłużej niż na pożywce z cukrem.

Woda peptonowa Witte'go 1%: Gruby kożuszek pierścieniowy, kremowy. Indolu nie tworzy.

Kartofel: Wzrost dobry; słuzowata powierzchnia kremowa; mikroskopowo: dość dużo form zdeformowanych.
Azo-

Argam: wzrost nader nikły.

Zadnego cukru, alkoholu, glukozydu nie fermentuje, nie tworzy gazu.
Zakwasza: glukozę, fruktózę, galaktozę, maltózę, sacharozę, dextrynę, glicyrynę, sorbit, salicynę.

Skrobii nie hydrolizuje.

Spory wytrzymują ogrzewanie w 100 °C: na agarze przy pH 7,0: 40—41' pH 5,0: 6—7' pH 8,0: 24° 30'.

Bakterii Nr. 26 nie udało się utożsamić z opisanymi w literaturze. Nietylnie nie identyczna, ale nawet nie jest zbliżona do żadnej ze znanych (Bergey, Lehmann i Neumann) bakterii sporowych, Gram negatywnych.

I. WPŁYW TEMPERATURY i pH NA KIEŁKOWANIE SPOR.

W celu stwierdzenia, jak działa temperatura otoczenia i pH środowisk na kiełkowanie spor, przeprowadzono szereg doświadczeń w granicach temperatur 12° do 42° C oraz pH 5,0 do pH 8,0.

Używałem we wszystkich wypadkach pożywki płynnej 1\(\frac{1}{2}\)% peptonu, 2% glukozy na wodzie wodociągowej) o odpowiednim pH.

Przy czym pH było sprawdzane po 3-iej sterylizacji na potencjometrze elektrodą chinhydronową; zakwaszano pożywkę przy pomocy HCl, alkaliczowano — NaOH.

Jako materiał służyły mi spory opisanych bakterii, wytworzone na agarze skoszonym (1\(\frac{1}{2}\)% agaru, 2% glukozy, 1\(\frac{1}{2}\)% peptonu, na wodzie wodociągowej), pH 7°, w temperaturze 30° C, przynajmniej miesięczne. Użycie tak starych hodowli zabezpieczało przed obecnością: 1° komórek wegetatywnych, 2° spor jeszcze nie dojrzałych, znajdujących się w osłonkach komórkowych.

METODA.

W doświadczeniach mych posługiwałem się metodą obserwacji bezpośredniej.

Około 2 cm sztandarowej pożywki o pH 7,0, ogrzanej przez 5' we wrzącej wodzie, szczęściłam 3 igłami starych hodowli agarowych. Tę za-

szczepioną próbówkę ogrzewałem w ciągu 1' we wrzącej wodzie, w celu zabicia ewentualnych form wegetatywnych. Następnie przenosiłam sterylizowaną pipetą po kilka krople tej zawiesiny spor do próbówek z pożywką sztandarową o pH 5, 7, 8. Po wymieszaniu, robiłam oczkiem platynowym
krople na szkieleńu przykrywkowym, które umieszczaliśmy na szklanych pierścionkach. Pierścionki były przyciśnięte do szkielek podstawowych bal samem kanadyjskim; dla zabezpieczenia kropel przed wysychaniem na dnie pierścionka znajdowała się bibuła nasycona wodą, brzegi pierścionka były szlifowane i pociągnięte specjalnym smarem (2 części smalcu wieprzowego, 1 część sosny pszczelnego, oczyszczonego przez gotowanie w wodzie) tak, że szkielek przykrywkowy przylegały do nich bardzo szczelnie. Tak przyciągane „hodowle kropelkowe" sprawdzali mikroskopowo (okular komp. 6, obiektyw immerja 18b Reicherta) dla stwierdzenia, czy w kropeli jest dostateczna ilość spor i czy nie ma komórek wegetatywnych. Następnie 3 równolegle „hodowle kropelkowe" umieszczalyśmy w termosatach o odpowiedniej temperaturze. Obserwacje mikroskopowe przeprowadzaliśmy w odstępach 15’ do chwili rozpoczęcia się kielkowania — a następnie co godzinę, licząc za każdym razem ilość spor i form kielkujących lub wykielkowanych w 10 polach widzenia. Stąd obliczamy % wykielkowanych w stosunku do początkowej ilości spor (t. zn. % wykielkowanych w stosunku do ilości spor obecnych + ilość wykielkowanych w 10 polach widzenia). Przygotowanie „hodowli kropelkowych" i dokonanie obliczeń musiały być prowadzone bardzo szybko.

Doświadczenia były powtarzane kilkakrotnie.

Wyniki szeregu doświadczeń zebrane są w tablicach, przy czym dając czas od zaszczerbienia do: 1° pojawienia się pierwszych form kielkujących, 2° zakończenia procesu kielkowania w danej kropli (pomijam wyniki obserwacji pośrednich).

Wyniki obserwacji.

A. Pałeczka № 8.

Z przytoczonej tablicy 1 (por. str. 380) i wykresów I i Ia widać, że:

1. Podwyższenie temperatury do pewnego optimum sprzyja szybkości kielkowania spor we wszystkich 3 zbadanych pH.

2. Przyśpieszenie kielkowania przez temperaturę w odstępach 10° aż do osiągnięcia optimum wynosi:

- dla pH 7: \(Q_{10°} = 4,4 \) dla początku kielków., a 6,1 dla 100\(% \)
- pH 5: \(Q_{10°} = 0,91 \) " " " " 1,07 " "
- pH 8: \(Q_{10°} = 3,6 \) " " " " 4,0 " "

3. Optimum temperatury kielkowania jest różne dla różnych pH, przy czym dla pH 7 temperatura optymalna jest niższa od temperatury optymalnej dla kielkowania w pH 5 i pH 8 (pH 7 — 30° C, pH 5 i pH 8 — 42° C).

4. Najbardziej optymalne warunki dla kielkowania spor bakterii Nr. 8 są w temperaturze 30° C przy pH 7 (kielkowanie zachodzi w czasie 1 godziny 50’ — 3 godz. 15’).

5. W pH 5 w 12° C spory bakterii Nr. 8 nie kielkują.
<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH 5,0</th>
<th>pH 7,0</th>
<th>pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Początek kiełkowania</td>
<td>Zakończenie kiełkowania</td>
<td>Początek kiełkowania</td>
</tr>
<tr>
<td>12°</td>
<td>5 dni — 0%</td>
<td>16° — 14%</td>
<td>22° — 67,2%</td>
</tr>
<tr>
<td>22°</td>
<td>3 h 30° — 5,1%</td>
<td>15° — 97,5%</td>
<td>5° — 45,5%</td>
</tr>
<tr>
<td>30°</td>
<td>1 h 50° — 2,3%</td>
<td>9° — ca 100%</td>
<td>1 h 50° — 58,3%</td>
</tr>
<tr>
<td>37°</td>
<td>2° — 10%</td>
<td>8° — ca 100%</td>
<td>2° — 5,6%</td>
</tr>
<tr>
<td>42°</td>
<td>1 h 50° — 5,4%</td>
<td>7° — ca 9,4%</td>
<td>2 h 5° — 9,4%</td>
</tr>
</tbody>
</table>
B. Pałeczka № 27.

Wyniki obserwacji nad przebiegiem kiełkowania spor bakterii № 27, bardzo podobnej do poprzedniej № 8, zawiera tablica 2. Z tablicy 2 (por. str. 383) i wykresów II i IIa wynika:

1. Podwyższenie temperatury aż do optymalnej sprzyja szybkości kiełkowania spor we wszystkich 3 badanych ph.

2. Przyśpieszenie kiełkowania przez temperaturę w odstępach 10°C — aż do osiągnięcia temperatury optymalnej wynosi:
 dla pH 7 $Q_{10^\circ} = 2,1$ dla początku kiełk., a 7,4 dla 100/0
 pH 5 $Q_{10^\circ} = 7,4$ " " " " 2,4 " "
 pH 8 $Q_{10^\circ} = 5,9$ " " " " 2,2 " "

3. Optymalne temperatury kiełkowania jest różne dla różnych pH, przy czym dla pH 7 temperatura optymalna jest niższa od temperatury optymalnej dla pH 5 i pH 8 (pH 7 — 30°C, pH 8 — 37°C, pH 5 — 42°C).

4. Najszybciej kiełkowanie zachodzi w pH 7 — najwolniej w pH 5 we wszystkich temperaturach.

5. Najbardziej optymalne warunki dla kiełkowania spor bakterii № 27 są w temperaturze 30°C pH 7 (kiełkowanie trwa 1 godz. 15' — 3 godz. 15').

C. Pałeczka № 26.

Wyniki obserwacji przebiegu kiełkowania bakterii № 26, bardzo odmiennych od poprzednich, podaje tablica 3 (por. str. 385) i wykresy III i IIIa. Z powyższej tablicy 3 widać, że:

1. Podwyższenie temperatury aż do pewnego optimum sprzyja szybkości kiełkowania spor we wszystkich badanych ph.

2. Przyśpieszenie kiełkowania przez temperaturę w odstępach 10°C — aż do osiągnięcia temperatury optymalnej wynosi:
 dla pH 7 $Q_{10^\circ} = 5,4$ dla początku kiełk., a 2,1 dla 100/0
 pH 5 $Q_{10^\circ} = 1,5$ " " " " 2,3 " "
 pH 8 $Q_{10^\circ} = 6,7$ " " " " 4,9 " "

3. Optymalna temperatura dla kiełkowania spor bakt. 26 w pożywce o pH 5 i pH 7 wynosi 37°C, dla pH 8 — 30°C.

4. W pożywce o pH 5, spory — we wszystkich temperaturach — kiełkują najwolniej.

<table>
<thead>
<tr>
<th>Temp, °C</th>
<th>pH 5,0</th>
<th>pH 7,0</th>
<th>pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Początek kielkowania</td>
<td>Zakończenie kielkowania</td>
<td>Początek kielkowania</td>
</tr>
<tr>
<td>12°</td>
<td>27ʰ45' - 29,6°/₀</td>
<td>32ʰ15' - ca 100°/₀</td>
<td>6ʰ45' - 5,2°/₀</td>
</tr>
<tr>
<td>22°</td>
<td>10ʰ20' - 8°/₀</td>
<td>15ʰ - ca 100°/₀</td>
<td>4ʰ - 4,7°/₀</td>
</tr>
<tr>
<td>30°</td>
<td>5ʰ35' - 9°/₀</td>
<td>8ʰ30' - ca 100°/₀</td>
<td>1ʰ15' - 2,7°/₀</td>
</tr>
<tr>
<td>37°</td>
<td>4ʰ50' - 4,16°/₀</td>
<td>7ʰ15' - ca 100°/₀</td>
<td>2ʰ - 27,8°/₀</td>
</tr>
<tr>
<td>42°</td>
<td>1ʰ15' - 33,8°/₀</td>
<td>4ʰ30' - ca 100°/₀</td>
<td>2ʰ - 15,0°/₀</td>
</tr>
<tr>
<td>Temp. °C</td>
<td>12</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>pH 5,0</td>
<td></td>
<td></td>
<td>25 h</td>
</tr>
<tr>
<td></td>
<td>3 dni - 0%</td>
<td>6 h - 10,2%</td>
<td>5 h - 57,4%</td>
</tr>
<tr>
<td>Zakończenie kielkowania</td>
<td>12h - ca 100%</td>
<td>4 h - 11,8%</td>
<td>6 h - ca 100%</td>
</tr>
<tr>
<td>Początek kielkowania</td>
<td>25 h - 46,4%</td>
<td>4 h - 11,8%</td>
<td>6 h - 15%</td>
</tr>
<tr>
<td>pH 7,0</td>
<td></td>
<td></td>
<td>25 h</td>
</tr>
<tr>
<td></td>
<td>3 dni - 0%</td>
<td>6 h - 10,2%</td>
<td>5 h - 57,4%</td>
</tr>
<tr>
<td>Zakończenie kielkowania</td>
<td>12h - ca 100%</td>
<td>4 h - 11,8%</td>
<td>6 h - ca 100%</td>
</tr>
<tr>
<td>Początek kielkowania</td>
<td>25 h - 46,4%</td>
<td>4 h - 11,8%</td>
<td>6 h - 15%</td>
</tr>
<tr>
<td>pH 8,0</td>
<td></td>
<td></td>
<td>32 h</td>
</tr>
<tr>
<td></td>
<td>3 dni - 0%</td>
<td>6 h - 10,2%</td>
<td>5 h - 57,4%</td>
</tr>
<tr>
<td>Zakończenie kielkowania</td>
<td>12h - ca 100%</td>
<td>4 h - 11,8%</td>
<td>6 h - ca 100%</td>
</tr>
<tr>
<td>Początek kielkowania</td>
<td>25 h - 46,4%</td>
<td>4 h - 11,8%</td>
<td>6 h - 15%</td>
</tr>
</tbody>
</table>
Wykres III
Bacillus №26

Wykres IIIa
Bacillus №26

Czas w godz

°C
<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH 5,0</th>
<th></th>
<th>pH 7,0</th>
<th></th>
<th>pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Początek kielkowania</td>
<td>Zakończenie kielkowania</td>
<td>Początek kielkowania</td>
<td>Zakończenie kielkowania</td>
<td>Początek kielkowania</td>
</tr>
<tr>
<td>12°</td>
<td>25h - 54,8%</td>
<td>31h - ca 100%</td>
<td>27h - 8%</td>
<td></td>
<td>24h - 77%</td>
</tr>
<tr>
<td>22°</td>
<td>7h - 16,6%</td>
<td>11h - ca 100%</td>
<td>7h30' - 57%</td>
<td></td>
<td>8h30' - 14,2%</td>
</tr>
<tr>
<td>30°</td>
<td>3h - 8%</td>
<td>6h - ca 100%</td>
<td>4h15' - 14%</td>
<td></td>
<td>8h30' - 100%</td>
</tr>
<tr>
<td>37°</td>
<td>4h20' - 25,7%</td>
<td>6h35' - ca 100%</td>
<td>4h30' - 9,5%</td>
<td></td>
<td>4h - 12,1%</td>
</tr>
<tr>
<td>42°</td>
<td>5h - 0,51%</td>
<td>14h20' - ca 100%</td>
<td>4h10' - 0,84%</td>
<td></td>
<td>24h - ca 100%</td>
</tr>
</tbody>
</table>

*) Zaobserwowalam początek kielkowania, % nie liczony - próbki stłukły się.
7. W temperaturze 12° C w pożywce o pH 5 spory nie kiełkują.

Ponieważ gotowanie 1' działało bardzo hamując na szybkość kiełkowania spor — do tego stopnia, że spory w temp. 12° C zaczynały kiełkować po 192 godz.

- 22° C — 70
- 30° C — 22
- 35° C — 64

badania prowadziłem bez gotowania spor, biorąc do doświadczeń hodowle conajmniej 4 miesięczne i sprawdzając bardzo skrupulatnie, czy przygotowane „hodowle kropelkowe” nie zawierają komórek wegetatywnych. Poza tym postępowałem jak uprzednio.

D. Bacillus cepae.

Analogiczne obserwacje co do kiełkowania spor Bacillus cepae zawiera tablica 4 (por. str. 387) i wykresy IV i IVa.

Z powyższej tablicy 4 widać, że:

1. Podwyższenie temperatury przyspiesza kiełkowanie spor we wszystkich 3 badanych pH.

2) Przyspieszenie kiełkowania przez temperaturę w odstępach 10° C aż do osiągnięcia optimum wynosi:

dla pH 7 \(Q_{10°} = 3,2 \) dla pierwszych kiełków, 2,1 dla 100%
- pH 5 \(Q_{10°} = 4,4 \)
- pH 8 \(Q_{10°} = 4,4 \)

3) Temperatura optymalna dla kiełkowania spor B. cepae w pożywce o pH 5 i pH 8 jest jednakowa i wynosi 30° C, dla pH 7 jest wyższa, a mianowicie — 37° C.

4) Nie ma bardzo znacznych różnic w szybkości kiełkowania w różnych pH dla tej samej temperatury (odchylenie stanowi t. 42° C).

5) Najszybciej kiełkują spory B. cepae w warunkach następujących: temperatura 30° C przy pH 5 (3 — 6 godz.).

WNIOSKI

Z przytoczonych wyżej doświadczeń, przeprowadzonych na sporach 4 gatunków bakterii, wynika:

1) Zarówno pH pożywki jak temperatura otoczenia mają duży wpływ na szybkość kiełkowania spor.
2) Krzywe, ilustrujące wpływ temperatury (wykres I, II, III, IV), mają przebieg charakterystyczny dla procesów fizjologicznych t. j. wykazują pewne optimum. Znamiennym dla nich jest to, że początkowym zmianom temperatury (t. j. w temp. niższych od opt.) — towarzyszą bardzo duże zmiany w szybkości kielkowania, po osiągnięciu zaś optimum — dalsze podwyższanie temperatury wpływa nieznacznie.

Przyspieszenie przez podwyższenie temp. o 10° C wyraża się w różnych granicach temperatur różnie: i tak dla pojawienia się pierwszych pałek w pożywce o pH 7 dla:

<table>
<thead>
<tr>
<th>Bakt. 8.</th>
<th>Bakt. 27.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12° C — 22° C Q₁₀ = 3,02</td>
<td>12° C — 22° C Q₁₀ = 1,7</td>
</tr>
<tr>
<td>22° C — 30° C Q₁₀ = 3,4</td>
<td>22° C — 30° C Q₁₀ = 4,0</td>
</tr>
<tr>
<td>30° C — 42° C Q₁₀ = 0,94</td>
<td>30° C — 42° C Q₁₀ = 1,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12° C — 22° C Q₁₀ = 3,7</td>
<td>12° C — 22° C Q₁₀ = 3,6</td>
</tr>
<tr>
<td>22° C — 30° C Q₁₀ = 3,2</td>
<td>22° C — 30° C Q₁₀ = 2,2</td>
</tr>
<tr>
<td>30° C — 41° C Q₁₀ = 0,95</td>
<td>30° C — 42° C Q₁₀ = 0</td>
</tr>
</tbody>
</table>

3) Nie można mówić oddzielnie o optymalnej temperaturze lub optymalnym pH dla kielkowania spor. Można jednak stwierdzić, że w granicach badanych temperatur, wszystkie badane bakterie we wszystkich pH najwolniej kielkują w temperaturze 12° C.

4) Temperatury optymalne dla 3 badanych pH mogą być różne, jak wynika to z tabl. 5.

<table>
<thead>
<tr>
<th></th>
<th>pH 5,0</th>
<th>pH 7,0</th>
<th>pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakt. 8</td>
<td>42°</td>
<td>30°</td>
<td>37°</td>
</tr>
<tr>
<td>Bakt. 27</td>
<td>42°</td>
<td>30°</td>
<td>37°</td>
</tr>
<tr>
<td>Bakt. 26</td>
<td>37°</td>
<td>37°</td>
<td>30°</td>
</tr>
<tr>
<td>B. cepae</td>
<td>30°</td>
<td>37°</td>
<td>37°</td>
</tr>
</tbody>
</table>
5) W granicach badanych przeze mnie temperatur, dla każdej temperatury, optymalne pH dla kiełkowania spor mogą być różne, jak to wykazuje tabl. 6.

T A B L I C A 6.

<table>
<thead>
<tr>
<th></th>
<th>12⁰</th>
<th>22⁰</th>
<th>30⁰</th>
<th>37⁰</th>
<th>42⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. 8</td>
<td>pH 7</td>
<td>pH 8</td>
<td>pH 7</td>
<td>pH 7</td>
<td>pH 8 i pH 7</td>
</tr>
<tr>
<td>B. 27</td>
<td>pH 7</td>
<td>pH 7</td>
<td>pH 7</td>
<td>pH 7</td>
<td>pH 7</td>
</tr>
<tr>
<td>B. 26</td>
<td>pH 7</td>
<td>pH 8</td>
<td>pH 7 i pH 8</td>
<td>pH 7</td>
<td>Kiełkuje tylko w pH 8</td>
</tr>
<tr>
<td>B. cepae</td>
<td>pH 8</td>
<td>pH 5</td>
<td>pH 5</td>
<td>pH 5</td>
<td>pH 5</td>
</tr>
</tbody>
</table>

6) Pewien określony rozmiar zespołu czynników badanych, więc pH i temperatury, jest najkorzystniejszy dla szybkości kiełkowania spor, jak to stwierdza tabl. 7.

T A B L I C A 7.

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>pH</th>
<th>Temperatura</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakt. 8</td>
<td>30⁰</td>
<td>pH 7</td>
<td></td>
</tr>
<tr>
<td>Bakt. 27</td>
<td>30⁰</td>
<td>pH 7</td>
<td></td>
</tr>
<tr>
<td>B. cepae</td>
<td>30⁰</td>
<td>pH 5</td>
<td></td>
</tr>
</tbody>
</table>

7) W przytoczonych doświadczeniach nie określałem minimum i maximum temperatury, ani minimum i maximum pH dla kiełkowania spor badanych bakterii. Doświadczenia były prowadzone w pewnych ścisłej z góry określonych warunkach: a więc w temp. 12⁰C—42⁰C oraz pH 5—8; chodziło o prześledzenie w tych granicach wpływu tych dwóch czynników, temperatury i pH, na kiełkowanie spor. Chcąc porównać działanie tych dwóch badanych czynników muszę jeszcze raz zaznaczyć, że porównanie to dotyczy tylko pewnych wąskich granic temperatury i pH, i że te czynniki w danym wypadku, t. j. w tej pracy nie są zbadane w rozmiarach
równorzędnyczych. Jednak pewne ogólne wnioski w danym wypadku można wyciągnąć, a mianowicie:

a) w przytoczonych doświadczeniach, w granicach temperatur $12^\circ - 22^\circ - 30^\circ C$, główne zmiany szybkości kiełkowania są spowodowane różnicami temperatury. W granicach temperatur $30^\circ - 37^\circ - 42^\circ C$ różnice w szybkości kiełkowania zachodzą głównie dzięki istniejącym różnicom pH. (Wykresy: I, Ia, II, IIa, III, IIIa, IV, IVa). Czyli w granicach pH 5 – 8 do pewnej temperatury (dopóki jedno z badanych pH nie osiągnie swej temperatury optymalnej) czynnikiem aktywującym kiełkowanie spor badanych jest temperatura — następnie dopiero większe znaczenie zaczyna mieć pH środowiską;

b) na szybkość kiełkowania badanych spor przyjętych w przeprowadzanych doświadczeniach granicach temperatur $(12^\circ - 42^\circ C)$ i pH $(5 - 8)$, większy wpływ mają zmiany temperatury niż zmiany pH. Widać to wyraźnie, gdy zestawimy różnice z jednej strony najkrótszych czasów kiełkowania w różnych pH — z drugiej — najkrótszych czasów kiełkowania w różnych temperaturach, jak to wynika z tabl. 8, 9, 10 i 11.

<table>
<thead>
<tr>
<th>Najkrótszy czas kiełkowania w danych pH</th>
<th>t°</th>
<th>Najkrótszy czas kiełkowania w danej temperaturze</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 5 $1^h30^m - 7^h$</td>
<td>12°</td>
<td>$16^h - 34^h$</td>
</tr>
<tr>
<td></td>
<td>22°</td>
<td>$2^h30^m - 5^h30^m$</td>
</tr>
<tr>
<td>pH 7 $1^h30^m - 3^h15^m$</td>
<td>30°</td>
<td>$1^h50^m - 3^h15^m$</td>
</tr>
<tr>
<td></td>
<td>37°</td>
<td>$2^h - 3^h40^m$</td>
</tr>
<tr>
<td>pH 8 $2^h - 3^h45^m$</td>
<td>42°</td>
<td>$2^h - 3^h40^m$</td>
</tr>
<tr>
<td>Różnica $0^1^m - 3^h45^m$</td>
<td></td>
<td>Różnica $14^h10^m - 30^h45^m$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Najkrótszy czas kiełkowania w danych pH</th>
<th>t°</th>
<th>Najkrótszy czas kiełkowania w danej temperaturze</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 5 $1^h15^m - 4^h30^m$</td>
<td>12°</td>
<td>$6^h45^m - 19^h$</td>
</tr>
<tr>
<td></td>
<td>22°</td>
<td>$1^h - 7^h$</td>
</tr>
<tr>
<td>pH 7 $1^h15^m - 3^h15^m$</td>
<td>30°</td>
<td>$1^h15^m - 3^h15^m$</td>
</tr>
<tr>
<td></td>
<td>37°</td>
<td>$2^h - 4^h$</td>
</tr>
<tr>
<td>pH 8 $1^h45^m - 4^h45^m$</td>
<td>42°</td>
<td>$1^h15^m - 4^h30^m$</td>
</tr>
<tr>
<td>Różnica $6^1^m - 1^h30^m$</td>
<td></td>
<td>Różnica $5^h30^m - 15^h45^m$</td>
</tr>
</tbody>
</table>
T A B L I C A 10.

<table>
<thead>
<tr>
<th>Najkrótszy czas kielkowania w danych pH</th>
<th>t°</th>
<th>Najkrótszy czas kielkowania w danej temperaturze</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 5 3h — 6h</td>
<td>120</td>
<td>17h — 25h30'</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>4h10' — 8h15'</td>
</tr>
<tr>
<td>pH 7 2h — 4h15'</td>
<td>300</td>
<td>2h — 6h25'</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>2h — 4h45'</td>
</tr>
<tr>
<td>pH 8 2h — 6h25'</td>
<td>420</td>
<td></td>
</tr>
</tbody>
</table>

Różnica 1h — 1h40'

T A B L I C A 11.

<table>
<thead>
<tr>
<th>Najkrótszy czas kielkowania w danych pH</th>
<th>t°</th>
<th>Najkrótszy czas kielkowania w danej temperaturze</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 5 3h — 6h</td>
<td>120</td>
<td>24h — 30h</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>8h40' — 10h40'</td>
</tr>
<tr>
<td>pH 7 4h15' — 6h30'</td>
<td>300</td>
<td>3h — 6h</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>4h20' — 6h35'</td>
</tr>
<tr>
<td>pH 8 4h — 9h</td>
<td>420</td>
<td>5h — 4h20'</td>
</tr>
</tbody>
</table>

Różnica 1h15' — 2h10'

Również unacisznić to sobie można, porównując różne czasów kielkowania w danej temperaturze dla różnych pH z różnicami czasów kielkowania w danych pH w różnych temperaturach, jak to przedstawiają tabl. 12, 13, 14 i 15.

T A B L I C A 12.

<table>
<thead>
<tr>
<th>Różnica w danej temperaturze</th>
<th>Różnica w danych pH, w granicach t° 120 — 420</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>pH 5</td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
</tr>
</tbody>
</table>

| pH 7 | |
| pH 8 | |
Bakt. Nr 27

T A B L I C A 13.

<table>
<thead>
<tr>
<th>Różnice w danej temperaturze</th>
<th>Różnice w danych pH, w granicach t° 12° - 42°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 5</td>
</tr>
<tr>
<td>12°</td>
<td></td>
</tr>
<tr>
<td>22°</td>
<td>24h15'</td>
</tr>
<tr>
<td>29°</td>
<td>6h30'</td>
</tr>
<tr>
<td>30°</td>
<td>4h20'</td>
</tr>
<tr>
<td>37°</td>
<td>2h50'</td>
</tr>
<tr>
<td>42°</td>
<td>0h45'</td>
</tr>
</tbody>
</table>

| 26h30' - 28h15' | | 5h30' - 15h45' | |
| | 29h15' - 27h15' | |

Bakt. Nr 26.

T A B L I C A 14.

<table>
<thead>
<tr>
<th>Różnice w danej temperaturze</th>
<th>Różnice w danych pH, w granicach t° 12° - 42°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 5</td>
</tr>
<tr>
<td>12°</td>
<td></td>
</tr>
<tr>
<td>22°</td>
<td>8h</td>
</tr>
<tr>
<td>29°</td>
<td>2h25'</td>
</tr>
<tr>
<td>30°</td>
<td>3h45'</td>
</tr>
<tr>
<td>37°</td>
<td>1h</td>
</tr>
<tr>
<td>42°</td>
<td></td>
</tr>
</tbody>
</table>

| 3h25' - 8h | | 15h45' - 20h45' | |
| | 23h - 25h35' | |

B. cepae.

T A B L I C A 15.

<table>
<thead>
<tr>
<th>Różnice w danej temperaturze</th>
<th>Różnice w danych pH, w granicach t° 12° - 42°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 5</td>
</tr>
<tr>
<td>12°</td>
<td></td>
</tr>
<tr>
<td>22°</td>
<td>3h</td>
</tr>
<tr>
<td>29°</td>
<td>1h40'</td>
</tr>
<tr>
<td>30°</td>
<td>1h15'</td>
</tr>
<tr>
<td>37°</td>
<td>0h20'</td>
</tr>
<tr>
<td>42°</td>
<td>3h55'</td>
</tr>
</tbody>
</table>

| 22h - 25h | | 22h30' | |
| | 20h - 21h | |

II. Wpływ temperatury i pH na rozwój komórek wegetatywnych.

Pożywkę, składającą się z $1\frac{1}{2}$% peptonu, 2% glukozy na wodzie wodociągowej, po doprowadzeniu do odpowiedniego pH, rozłałam do próbówek po 5 cm³ (pH sprawdzałam po 3-jej sterylizacji na potencjometrze elektrodą chinhydronową) szczepiłam 3 oczkami płynnej 24 godzinnej kultury o pH 7,0 i umieszczalam w termostacie o odpowiedniej temperaturze.
Rozwój określaliśmy ze zmętnienia, sprawdzając pierwszy raz po 3 godz. od zaszczepienia — a następnie co godziny. Tak częste badanie było konieczne dla oznaczenia początku rozwoju (pierwszego zmętnienia), gdyż w bardzo silnie i szybko rozwijających się hodowlach różnice zacierały się prędko.

Badania prowadziłem dla bakterii Nr. 8, 27 i 26.

Wyniki poszczególnych doświadczeń są zebrane w tablicach 16, 17, 18.

TA B L I C A 16.

<table>
<thead>
<tr>
<th>Bakt. Nr. 8.</th>
<th>pH 5</th>
<th>pH 7</th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>12⁰</td>
<td>—</td>
<td>36⁰</td>
<td>36⁰</td>
</tr>
<tr>
<td>22⁰</td>
<td>—</td>
<td>6⁰</td>
<td>7⁰</td>
</tr>
<tr>
<td>30⁰</td>
<td>24⁰ — 36⁰</td>
<td>4⁰</td>
<td>4⁰ — 5⁰</td>
</tr>
<tr>
<td>37⁰</td>
<td>24⁰</td>
<td>4⁰</td>
<td>4⁰</td>
</tr>
<tr>
<td>42⁰</td>
<td>—</td>
<td>3 — 4⁰</td>
<td>4⁰</td>
</tr>
</tbody>
</table>

TA B L I C A 17.

<table>
<thead>
<tr>
<th>Bakt. Nr. 27.</th>
<th>pH 5</th>
<th>pH 7</th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>12⁰</td>
<td>—</td>
<td>24⁰ — 30⁰</td>
<td>36⁰ — 48⁰</td>
</tr>
<tr>
<td>22⁰</td>
<td>—</td>
<td>7⁰ — 8⁰</td>
<td>6⁰ — 7⁰</td>
</tr>
<tr>
<td>30⁰</td>
<td>24⁰ — 48⁰</td>
<td>> 4⁰</td>
<td>4⁰</td>
</tr>
<tr>
<td>37⁰</td>
<td>36⁰</td>
<td>4⁰</td>
<td>4⁰</td>
</tr>
<tr>
<td>42⁰</td>
<td>—</td>
<td>> 3⁰</td>
<td>3⁰</td>
</tr>
</tbody>
</table>

TA B L I C A 18.

<table>
<thead>
<tr>
<th>Bakt. Nr. 26.</th>
<th>pH 5</th>
<th>pH 7</th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>12⁰</td>
<td>—</td>
<td>36⁰ — 48⁰</td>
<td>36⁰</td>
</tr>
<tr>
<td>22⁰</td>
<td>—</td>
<td>7⁰ — 8⁰</td>
<td>7⁰</td>
</tr>
<tr>
<td>30⁰</td>
<td>36⁰ — 48⁰</td>
<td>5⁰</td>
<td>5⁰</td>
</tr>
<tr>
<td>37⁰</td>
<td>—</td>
<td>4⁰</td>
<td>> 4⁰</td>
</tr>
<tr>
<td>42⁰</td>
<td>—</td>
<td>—</td>
<td>12⁰</td>
</tr>
</tbody>
</table>

Z przytoczonych wyżej tablic wynika:

1) Zarówno pH pożywki jak i temperatura otoczenia mają duży wpływ na szybkość rozwoju wegetatywnego badanych bakterii.

2) Dla 3 badanych pH temperatury optymalne mogą być różne (Tablica 19).
3) Dla badanych temperatur optymalne pH może być różne (Tablica 20).

<table>
<thead>
<tr>
<th></th>
<th>pH 5</th>
<th>pH 7</th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakt. 8</td>
<td>37°</td>
<td>42°</td>
<td>37°</td>
</tr>
<tr>
<td>Bakt. 27</td>
<td>30°</td>
<td>42°</td>
<td>42°</td>
</tr>
<tr>
<td>Bakt. 26</td>
<td>30°</td>
<td>37°</td>
<td>37°</td>
</tr>
</tbody>
</table>

4) Pewien zespół pH i temperatury jest najkorzystniejszy dla rozwoju komórek wegetatywnych badanych bakterii (Tablica 21).

<table>
<thead>
<tr>
<th></th>
<th>12°</th>
<th>22°</th>
<th>30°</th>
<th>37°</th>
<th>42°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakt. 8</td>
<td>pH7 i pH8</td>
<td>pH7</td>
<td>pH7</td>
<td>pH7</td>
<td>pH7</td>
</tr>
<tr>
<td>Bakt. 27</td>
<td>pH7</td>
<td>pH8</td>
<td>pH7</td>
<td>pH7</td>
<td>pH7</td>
</tr>
<tr>
<td>Bakt. 26</td>
<td>pH8</td>
<td>pH8</td>
<td>pH7 i pH8</td>
<td>pH8</td>
<td>Kienkuje tylko w pH 8</td>
</tr>
</tbody>
</table>

5) Nie można wprawdzie mówić oddzielnie o optymalnym pH lub optymalnej temperaturze dla rozwoju komórek wegetatywnych badanych bakterii.

Można jednak stwierdzić, że z pośród 3 badanych pH — pH 5,0 jest najmniej odpowiednim dla wzrostu. Wszystkie badane bakterie w pożywce o tym pH we wszystkich tempe-

*) B. cepae — dane zaczerpnięte z pracy R. Edelsztain-Kossowej.
raturach albo nie rozwijały się zupełnie, albo rozwijały się bardzo wolno i słabo — zawsze najgorszej. Właściwie tylko w poszczególnych temperaturach mogły się bakterie rozwijać w pożywce o pH 5 (Bakt. 8 w 30° i 37° C. Bakt. 27 w 30° i 37° C, Bakt. 26 w 30° C).

6) Obniżenie temperatury do 12° C działa silnie hamująco na szybkość i na intensywność rozwoju wegetatywnego badanych bakterii.

7) Różnice w szybkości rozwoju badanych gatunków bakterii w granicach pH 7 i 8 są nieznaczne.

Przechodząc teraz do zestawienia wpływu pH i temperatury na kiełkowanie spor i na rozwój wegetatywny, muszę stwierdzić, że:

1) Najodpowiedniejsze warunki pH i temperatury dla kiełkowania spor i dla rozwoju wegetatywnego (Tablica 7 i 21)
są dla tych dwóch różnych procesów różne, jak to wykazują wykresy V i VI.

2) Kiełkowanie spor w danych temperaturach zachodzi w szerszych granicach pH niż rozwój wegetatywny. W pożywce o pH 5 badane bakterie rozwijają się bardzo źle lub nie rozwijają się wcale — tymczasem dla kiełkowania spor pH 5 nie stanowi przeszkody.

3) Zarówno dla kiełkowania spor jak i dla wzrostu wegetatywnego obniżenie temperatury do 12° C ma wpływ silnie hamujący.

III. Wpływ pH ŚRODOWISKA NA ODPORNOŚĆ SPOR NA OGRZEWANIE W 100° C.

Do rozpuszczonego w próbówce przy 100° C agaru (2% agaru, 1,5% peptonu, 2% glukozy na wodzie wodociągowej) o podanym pH, szczepiono 3 igłami spory z hodowli agarowych dwumiesięcznych. Zawiesinę tę ogrzewano w 100° C (aparat
Kocha) przez różny okres czasu, począwszy od 15'. Po wyścigu z aparatu Kocha sklocono dokładnie zawartość próbówki i wylewano z niej 3 równoległe szaliki agarowe o pH 7. Szaliki umieszczano w termostacie przy 30°C. Po 24h sprawdzano wzrost na szalkach. Szalki niezarosnięte ponownie obserwowano jeszcze w ciągu trzech następnych dni.

Wyniki doświadczeń tych zestawione są w tablicy 22.

<table>
<thead>
<tr>
<th></th>
<th>pH 5</th>
<th></th>
<th>pH 7</th>
<th></th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>„Czas *“ niezabójczy“</td>
<td>„Czas **“ zabójczy“</td>
<td>„Czas *“ niezabójczy“</td>
<td>„Czas **“ zabójczy“</td>
<td>„Czas *“ niezabójczy“</td>
</tr>
<tr>
<td>Bakt. 8</td>
<td>6h</td>
<td>7h</td>
<td>61’</td>
<td>65’</td>
<td>2h 36’</td>
</tr>
<tr>
<td>Bakt. 27</td>
<td>6h</td>
<td>7h</td>
<td>60’</td>
<td>65’</td>
<td>1h 36’</td>
</tr>
<tr>
<td>Bakt. 26</td>
<td>6h</td>
<td>7h</td>
<td>40’</td>
<td>41’</td>
<td>2h 36’</td>
</tr>
<tr>
<td>B. cepae</td>
<td></td>
<td></td>
<td>6’</td>
<td>7’</td>
<td></td>
</tr>
</tbody>
</table>

Z tablicy 22 wynika, że u trzech badanych gatunków bakterii najszybciej zostały zabite spory w agarze z pożywką o pH 7 — najpóźniej w agarze o pH 5.

W obszarnej literaturze, dotyczącej wytrzymałości spor na działanie wysokiej temperatury, nie spotyka się nawet wzmianki o podobnym zjawisku. Chcąc więc nieco wyrównać sprawę osłabienia niejako działania wysokiej temperatury w agarze przez [pH] — zajęto się nią bliżej.

Przede wszystkim starano się stwierdzić, czy czynnikiem działającym było stężenie [H+] czy też może jony CI⁺ (pożyw-

*) „Czas niezabójczy“ — oznacza w tej tablicy najdłuższy okres czasu ogrzewania, po którym spory jeszcze kielkowały, tworząc kolonie.

**) „Czas zabójczy“ — najkrótszy okres czasu ogrzewania, po którym spory już nie tworzyły kolonii.
ka była zakwaszana HCl). Należało zatem zbadać wpływ różnich kwasów na odporność spor w 100° C przy pH 5. Przygotowano więc na wodzie destylowanej ze szkła roztwory kilku kwasów do stężenia [H+] = 5 (sprawdzone na potencjometrze elektrodą chinhydronomicznej). Użyte do doświadczeń roztwory kwasów miały pH: \(\text{CH}_3\text{COOH} = 5,1; \text{CH}_3\text{CH(OH)}\text{COOH} = 5,0; \text{H}_3\text{PO}_4 = 5,0; \text{HNO}_3 = 5,0; \text{HCl} = 5,1; \text{H}_2\text{SO}_4 = 5,0 \).

Rozpoczynając doświadczenie, próbówkę z danym kwasem ogrzewano przez 15' w gotującej się wodzie, szczepiono ją następnie 3 igłami spor z hodowli agarowych dwumiesięcznych. Zawiesinę tę ogrzewano w 100° C (aparat Kocha) przez różny okres czasu, początkowy, od 41' (41' zostało ustalone w poprzednim doświadczeniu jako „czas zabójczy” dla badanych spor).

Po wyjęciu z aparatu Kocha skłócano dokładnie zawartość próbówki i wylewano z niej trzy równoleglś szalki agarowe o pH 7, z którymi postępowano jak w doświadczeniu pierwszym.

Wyniki doświadczenia podane są w tablicy 23.

Z tablicy 23 wynika, że

1° wszystkie użyte w doświadczeniu kwasy o pH ± 5 wywierają pewien hamujący wpływ na działanie wysokiej temperatury na spory badanych bakterii;
2° między poszczególnymi kwasami istnieją różnice w natężeniu ich wpływu. (Najsłabiej zaznaczyło się to dla bakterii Nr. 8);
3° Najściśniej działają w kierunku osłabienia wpływu wysokiej temperatury na spory badanych bakterii aniony \(\text{SO}_4 \) i \(\text{Cl} \).

Należy więc przypuszczać, że w zjawisku zmniejszenia działania wysokiej temperatury na spory badanych bakterii w kwasach o pH 5 biorą udział obydwie komponenty — stężenie [H+] i rodzaj anionu. Doświadczenie wyżej przytoczone nie wyjaśniło jednak, który z tych dwóch czynników jest decydujący.

W następnym więc doświadczeniu, przeprowadzonym już tylko dla bakterii 26, przygotowano roztwory tych samych kwasów o pH 1, 2, 3, 4. Sądzono bowiem, że przy większych stężeniach [H+] wyraźniej wystąpią różnice pomiędzy poszczególnymi kwasami.
<table>
<thead>
<tr>
<th>Bakteria 8</th>
<th>H₂O destylow. ze szkła pH 5,1</th>
<th>CH₃COOH</th>
<th>CH₃CH(OH)COOH pH 5,0</th>
<th>H₃PO₄ pH 5,0</th>
<th>HNO₃ pH 5,0</th>
<th>HCl pH 5,1</th>
<th>H₂SO₄ pH 5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
</tr>
<tr>
<td>3h30'</td>
<td>3h30'</td>
<td>3h30'</td>
<td>*</td>
<td>3h</td>
<td>*</td>
<td>3h30'</td>
<td>*</td>
</tr>
<tr>
<td>4h</td>
<td>4h</td>
<td>4h</td>
<td>4h30'</td>
<td>4h30'</td>
<td>4h</td>
<td>4h30'</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bakteria 27</th>
<th>H₂O destylow. ze szkła pH 5,1</th>
<th>CH₃COOH</th>
<th>CH₃CH(OH)COOH pH 5,0</th>
<th>H₃PO₄ pH 5,0</th>
<th>HNO₃ pH 5,0</th>
<th>HCl pH 5,1</th>
<th>H₂SO₄ pH 5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
</tr>
<tr>
<td>2h30'</td>
<td>2h</td>
<td>2h30'</td>
<td>2h</td>
<td>2h</td>
<td>2h30'</td>
<td>2h</td>
<td>2h</td>
</tr>
<tr>
<td>3h</td>
<td>3h</td>
<td>2h30'</td>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>4h30'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bakteria 26</th>
<th>H₂O destylow. ze szkła pH 5,1</th>
<th>CH₃COOH</th>
<th>CH₃CH(OH)COOH pH 5,0</th>
<th>H₃PO₄ pH 5,0</th>
<th>HNO₃ pH 5,0</th>
<th>HCl pH 5,1</th>
<th>H₂SO₄ pH 5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
<td>Czas niezabójczej</td>
<td>Czas zabójczej</td>
</tr>
<tr>
<td>2h30'</td>
<td>2h</td>
<td>2h30'</td>
<td>2h</td>
<td>2h</td>
<td>2h30'</td>
<td>2h</td>
<td>2h</td>
</tr>
<tr>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>3h</td>
<td>4h30'</td>
<td>4h30'</td>
</tr>
</tbody>
</table>

[Miejsca w tablicy zaopatrzone gwiazdką oznaczają, że w pośrednich, w odstępach 30' robionych próbach, nie było zgody wyników — raz otrzymywano wzrost na szalkach — to znów go nie było; podobne zjawisko spotyka się bardzo często w literaturze, dotyczącej wytrzymałości spor na wysoką temperaturę [Bredemann, Eckelmann, Maqoon, Neide, Wahl, Williams]].
Użyte w doświadczeniu roztwory kwasów miały pH:

<table>
<thead>
<tr>
<th>Kwas</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>1,1</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>1,3</td>
</tr>
<tr>
<td>HNO₃</td>
<td>1,0</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>0,95</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>2,0</td>
</tr>
<tr>
<td>CH₃CH(OH)COOH</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Wyniki doświadczenia ilustruje tabela 24.

Z tablicy 24 wynika, że istotnie, w niższych pH różnice w działaniu poszczególnych kwasów wystąpiły wyraźniej, a mianowicie: przy stężeniu [H⁺] = 2 najsilniej działały kwasyny: HCl i H₂SO₄. najśląbiej — kwasy organiczne, octowy i mlekowy, oraz kwas fosforowy. W kwasy azotowy zajmował stanowisko pośrednie. Można je więc uszeregować następująco:

H₂SO₄ > HCl > HNO₃ > H₃PO₄ = CH₃COOH = CH₃CH(OH)COOH

Z tego wyraźnie widać, że decydujące znaczenie przy pH 2 ma nie [H⁺], gdyż było wszak równe dla wszystkich użytych kwasów — a aniony tych kwasów.

Z tablicy 24 wynika również, że użyte w doświadczeniu kwasy można podzielić na następujące grupy, zachowujące się różnie przy zmianach pH od 1 — 5.

I grupa: kwas octowy i mlekowy (działające słabo) w miarę podwyższania pH od 1 do 5 zwiększają swoje „ochronne działanie”.

II grupa: kwas azotowy (działający średnio) — w granicach pH od 2 do 4 zachowuje się jednakowo („czas nie zabójczy” stale = 2₃¹⁄₃, „zabójczy” = 2₃⁵⁄₃) a dopiero w przy pH 5 działa nieco silniej (czas niezabójczy = 2₃⁵⁄₃, czas zabójczy = 3¹⁄₃).

III grupa: HCl i H₂SO₄ (kwasy działające bardzo silnie) ich „działanie ochronne” w granicach pH 1 — 3 pozostaje jednakowo silne, a w miarę dalszego podwyższania pH od 3 do 5 ich „działanie ochronne” nieco słabnie ¹).

Wskutek tego więc, że przy zmianach pH od 1 do 5 kwasy słabo działające (I grupa) zwiększają swoje „ochronne działanie”, ¹)

¹) Kwas fosforowy przy zmianach pH od 1 — 5 zachowuje się bardzo nierówno, tak że nie o nim nie można powiedzieć — raczej jednak należałoby go zaliczyć do grupy I.
<table>
<thead>
<tr>
<th>pH</th>
<th>(\text{CH}_3\text{COOH})</th>
<th>(\text{CH}_3\text{CH(ОН)COOH})</th>
<th>(\text{H}_3\text{PO}_4)</th>
<th>(\text{HNO}_3)</th>
<th>(\text{HCl})</th>
<th>(\text{H}_2\text{SO}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Czas niezabójczy</td>
<td>Czas zabójczy</td>
<td>Czas niezabójczy</td>
<td>Czas zabójczy</td>
<td>Czas niezabójczy</td>
<td>Czas zabójczy</td>
</tr>
<tr>
<td>pH 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60'</td>
<td></td>
<td></td>
<td></td>
<td>5h30'</td>
</tr>
<tr>
<td>pH 2</td>
<td></td>
<td>60'</td>
<td>60'</td>
<td></td>
<td></td>
<td>5h30'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1h30'</td>
<td>1h30'</td>
<td></td>
<td></td>
<td>5h30'</td>
</tr>
<tr>
<td>pH 3</td>
<td></td>
<td>41'</td>
<td></td>
<td>3h30'</td>
<td></td>
<td>5h30'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60'</td>
<td></td>
<td>2h30'</td>
<td>5h30'</td>
</tr>
<tr>
<td>pH 4</td>
<td></td>
<td>2h</td>
<td></td>
<td>5h</td>
<td></td>
<td>4h30'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2h30'</td>
<td>4h30'</td>
<td>5h30'</td>
<td></td>
<td>4h30'</td>
</tr>
<tr>
<td>pH 5</td>
<td></td>
<td>2h</td>
<td></td>
<td>2h</td>
<td></td>
<td>4h30'</td>
</tr>
<tr>
<td>z tabl. 23</td>
<td></td>
<td>2h30'</td>
<td>3h</td>
<td>2h</td>
<td>2h30'</td>
<td>3h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2h30'</td>
<td>3h</td>
<td>3h</td>
<td></td>
<td>4h30'</td>
</tr>
</tbody>
</table>
łanie”, kwas działający średnio (II grupa) zachowuje się jednakoowo, a kwasy silnie działające (III grupa) zmniejszają swe „ochronne działanie” — w wyższych pH (n. p. w użytym w poprzednim doświadczeniu pH 5), różnice pomiędzy poszczególnymi kwasami nie są tak wyraźne.

Nawiązując do pierwszego doświadczenia, można obecnie wypowiedzieć przypuszczenie, że zmniejszenie szkodliwego działania wysokiej temperatury na spory, ogrzewane w 100°C w agarze zakwaszonym do pH 5 przy pomocy HCl, jest wynikiem wpływu następujących czynników:
1° koncentracji [H⁺];
2° wpływu anionu Cl⁻;
3° prócz tego również musi mieć wpływ użycie środowiska koloidalnego, działającego „ochronnie” (agar), jak i dođatek pożywki — gdyż w doświadczeniu pierwszym spory w agarze z pożywką o pH 5 wytrzymywały ogrzewanie w 100°C w ciągu 7h, zaś przy stosowaniu czystych roztworów kwasów — również o pH 5, wytrzymywały najwyżej 4h30’.

STRESZCZENIE WYNIKÓW.

Z przytoczonych wyżej doświadczeń, przeprowadzonych na czterech gatunkach bakterii, wynika:
1° temperatura otoczenia i pH środowiska mają duży wpływ zarówno na szybkość kiełkowania spor jak i na szybkość rozwoju wegetatywnego;
2° dla kiełkowania spor i dla wzrostu badanych bakterii istnieje pewien zespół pH i temperatury najbardziej optymalny — może być on jednak różny dla tych dwóch różnych procesów;
3° kiełkowanie spor badanych bakterii w danych temperaturach zachodzi w szerszych granicach pH niż rozwój wegetatywny. W pożywce o pH 5 spory kielkują bez dużego opóźnienia, natomiast w tejże pożywie rozwój wegetatywny tych samych bakterii we wszystkich badanych temperaturach jest bądź zupełnie powstrzymywany bądź nader opóźniony i osłabiony;
4° obniżenie temperatury do 12°C zmniejsza bardzo silnie szybkość zarówno kiełkowania spor jak i rozwoju wegetatywnego;
5. W przyjętych granicach temperatur (12° C — 42° C) i pH (5 — 8), silniej wpływają na szybkość kielkowania badanych spor temperatura niż pH;

6. Fizjologicznie i morfologicznie nader bliskie formy bakterii dają się łatwo rozróżnić odmiennym działaniem temperatury i pH na szybkość rozwoju wegetatywnego i kielkowania ich spor (tut. szczególnie szczepy Nr 8 i 27 Bacillus anthracoides).

7. pH środowiska, w którym spory są ogrzewane, ma wpływ na ich odporność na działanie wysokiej temperatury; gdy tym środowiskiem są kwasy — działa nie tylko [H⁺] lecz również anion użytego kwasu — i to w pewnych wypadkach decydująco;

8. Badane spory najodporniejsze były na działanie temperatury 100° C, gdy ogrzewano je w agarze o pH 5.

Panu Profesorowi Dr Kazimierzowi Bassalikowi, pod którego kierunkiem praca ta była wykonana w Zakładzie Fizjologii Roślin Uniwersytetu J. Piłsudskiego, składam głębokie wyrazy wdzięczności i podziękowania za Jego cenną pomoc i światłe rady.

BIBLIOGRAFIA.

ZUSAMMENFASSUNG.

Es wurde die Temperatur- und pH-Wirkung auf Sporenkeimung und vegetatives Wachstum von vier sporenbildenden Bodenbakterien untersucht, ferner die Abtötungszeiten für die Sporen bei verschiedenem pH bestimmt.

Als Versuchsmaterial dienten Bacillen mit den Laboratoriums—№ 8 und 27, die nahezu mit Bacillus anthracoides Huppe übereinstimmten, ein nicht zu bestimmender Bacillus № 26 und Bacillus cepae K. Bassalik et R. Edelsztein.

Als Temperaturgrenzen wurden 12—42°C gewählt sowie eine [H+] von 5—8 pH.

1. Die Anfangs- und Endbeobachtungen sind in bezug auf die Wirkung der zwei untersuchten Faktoren in den Tabellen 1—15 und den Kurven I—IVa dargestellt, woraus sich der optimalste Ausmaß des untersuchten Faktorenpaares (Kurven V) ergibt.

2. Die Ergebnisse der Untersuchung über die Wirkung des gleichen Faktorenpaares auf das vegetative Wachstum
sind in den Tabellen 16—21 zusammengestellt, während die Kurve VI den optimalsten Ausmaass von t^0 und pH widergibt.

Pflanzenphysiol. Institut
der J. Pilsudski-Universität in Warszawa.