Pollenanalytische Untersuchungen des Inter-
 glazials von Žoliborz in Warschau.

Von

JADWIGA RANIECKA.
(Tafel XIII A).

Einleitung.

Im Jahre 1926 wurde beim Bau eines neuen Kollektors in Žoliborz bei Warschau eine Serie von See- und Torfbildungen aufgeschlossen. Sie liegen in der Grundmoräne, in einer Senke, die in der Richtung SSW-NNE verläuft und den See von Žoliborz bildete. Diesen Bildungen liegen unmittelbar feinkörnige und mittlere Sande auf. Das Alter dieses Sees und folglich auch der Seebildungen und der Torfe wurde durch S. Różycski auf Grund der Profile des anliegenden Geländes bestimmt; Różycski hält sie für jünger als die obere Moräne (Riss) (14); demnach bestand der genannte See während des Riss-Würm Interglazials, das durch W. Szafer Varsoven I— Varsoven II genannt wurde (19). Die die Torfe unmittelbar bedeckenden Sande stammen wahrscheinlich aus der Würmvereisung (Varsoven II); der Würmgletscher ist bis an Warschau nicht herangekommen, wofür das Fehlen der Moränenbildungen im Hangenden der Torfe spricht. Im Profil der Seebildungen und Torfe vom Žoli-
borz-See sind folgende Schichten zu unterscheiden (Tafel XIII A):

A. Moostorf, hauptsächlich durch Drepanocladius vernicosus gebildet.

B. Waldtorf, vom Detritus der Bäume bestehend; behält zahlreiche gut erhaltene Stücke der Baumstämme und Zweige, sowie Säugetierreste.

C. Sumpftorf, von stark zersetzten Pflanzenresten bestehend, unter denen Carex sp. eine wichtige Rolle spielen. Es stellt eine dunkelbraune, bituminöse Masse dar. Reiche Schneckenfauna.
D. Grauer Seeemergel, manchmal fast weiss, mit einer reichen Schneckenfauna und zahlreichen, gut konservierten Pflanzenresten.

E. Grauer Seeemergel mit einer Sandbeimischung.

F. Sandton.

G. Sand.

Die genannten Bildungen wurden in geologischer Hinsicht durch S. Różycki, ihre Fauna durch W. Poliński bearbeitet.

Pollenanalyse.

Ich habe vom Institut der Geologie und Paläontologie der Warschauer Universität die Proben von allen diesen Bildungen bekommen, um dieselben nach der pollenanalytischen Methode zu untersuchen; die I-te Serie umfasst die Proben von allen Schichten von F bis A, entnommen von 600 m des Kolektorprofils; die II-te Serie wird durch die mittleren Schichten gebildet von D bis C und stammt von 700 m des Profils; die III-te Serie besteht aus den oberen Schichten, von C bis A, von 750—800 m desselben Profils. Der Rest der Proben stammt von verschiedenen Stellen und Niveaus des Profils und bildet keine zusammenhängenden Serien.

In dem unteren Teile der B-Schicht (B_3) sehen wir den Pollen in einer noch nicht grossen Anzahl, in den oberen Teilen dieses Torfes nimmt seine Quantität allmählich derart zu, dass es in B_1, wie auch in A, häufig vorkommt.

Bei der Analyse habe ich den Pollen von folgenden Baumgattungen erkannt: Kiefer (Pinus), Fichte (Picea), Tanne (Abies), Birke (Betula), Erle (Alnus), Weissbuche (Carpinus), Eiche (Quercus), Linde (Tilia), Ulme (Ulmus), Hasel (Corylus), Buche (Fagus), Weide (Salix) und Ahorn (Acer). Das Auftreten des Pollens der Eibe (Taxus) wurde von mir nicht festgestellt, obgleich W. Szafer (19) auf makroskopischem Wege das Vorkommen der Taxus baccata L. in den Ablagerungen von Žoliborcz nachgewiesen hat. Ich nehme an, dass der Pollen der Taxus sich nicht im fossilen Zustande erhalten kann. P. Keller beweist das klar für Taxus und Populus. Diese Meinung wird durch Erdtman (4) geteilt. Kirchner, Loew und Schröter (9) geben an, dass der Pollen der Taxus, Larix und Juniperus eine Intine besitzt, welche bei dem Zusammentreffen mit Wasser mächtig anschwillt, dabei wird die Exine stark angespannt, dann aufgerissen und abgeworfen. Der Pollen ohne Exine ist aber zu zart, um erhalten werden zu können.

Die Schicht E ist die niedrigste von denen, in welchen der Pollen enthalten ist. Ich hatte die Proben dieser Schicht von 600 m und 800 m des Kollektorprofils.

Die Pollenanalyse dieser Schicht hat zu folgendem Ergebnis geführt.

<table>
<thead>
<tr>
<th></th>
<th>Pinus $%$</th>
<th>Picea $%$</th>
<th>Betula $%$</th>
<th>Salix $%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E I-Te Serie</td>
<td>72.7</td>
<td>1.3</td>
<td>24.7</td>
<td>1.3</td>
</tr>
<tr>
<td>E 800 m des Kollektorprofils</td>
<td>72.0</td>
<td>0.7</td>
<td>26.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Wir sehen, dass der Pollen der Kiefer und der Birke bei weitem überwiegt. Der Fichten- und Weidenpollen ist nur in geringer Menge vorhanden.

Ausser den obengenannten Baumgattungen habe ich mikroskopisch noch folgende nachgewiesen:

Typha sp. Pollen
Ceratophyllum sp. Haare
Athyrium filix femina Roth. . Sporen
Drepanocladus vernicosus Warnst. Blattreste

Die Pollenanalyse der nächsten Schicht D, die der Schicht E von 600 m des Kollektorprofils aufliegt, hat zu folgenden Resultaten geführt:

<table>
<thead>
<tr>
<th></th>
<th>Pinus %</th>
<th>Picea %</th>
<th>Betula %</th>
<th>Alnus %</th>
<th>Quercus %</th>
<th>Ulmus %</th>
<th>Tilia %</th>
<th>Quercetum mixtum %</th>
<th>Corylus %</th>
<th>Carpinus %</th>
</tr>
</thead>
<tbody>
<tr>
<td>D I-ten Serie</td>
<td>10,71</td>
<td>—</td>
<td>35,71</td>
<td>32,14</td>
<td>1,78</td>
<td>16,07</td>
<td>50,00</td>
<td>162,64</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>D III-ten Serie</td>
<td>6,67</td>
<td>0,67</td>
<td>0,67</td>
<td>36,00</td>
<td>6,00</td>
<td>0,67</td>
<td>36,67</td>
<td>43,34</td>
<td>113,33</td>
<td>12,00</td>
</tr>
</tbody>
</table>

¹) Der Pollen mittels der biometrischen Methode nachgewiesen (Trela) (22).
Das Vorhanden des Weissbuchenpollens, dessen Anteil später allmählich zunimmt, sowie das abermalige Erscheinen der Fichte kann als Beweis dafür betrachtet werden, dass die Schicht D_3 der III-ten Serie sich in einer späteren Zeit als die Schicht D der I-ten Serie abgelagert hat.

Der Haselpollen kommt in einer sehr grossen Menge vor. Sein Frequenzmaximum erreicht 162'6%.

Der Erlenpollen erscheint auch in einer grossen Anzahl (35'7%). Im Gegensatz dazu tritt in dieser Schicht der früher dominierende Kiefer- und Birkenpollen nur im geringen Quantum auf. Das Vorhanden des Kieferpollens darf dem Windtransport aus grösserer Entfernung zugeschrieben werden.

Andere mikroskopisch nachgewiesene Pflanzen aus dieser Schicht

Typha sp. Pollen
Athyrium filix femina Roth. Sporen

Die Proben des niedrigeren Teiles der Schicht B (B_3 und B_2) haben zu folgenden Spektren geführt:

<table>
<thead>
<tr>
<th></th>
<th>Pinus %</th>
<th>Picea %</th>
<th>Betula %</th>
<th>Alnus %</th>
<th>Quercus %</th>
<th>Ulmus %</th>
<th>Fila %</th>
<th>Quercus mixtum %</th>
<th>Corylus %</th>
<th>Carpinus %</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_3 I-te Seite</td>
<td>6'33</td>
<td>2'72</td>
<td>0'90</td>
<td>57'27</td>
<td>2'72</td>
<td>0'90</td>
<td>11'81</td>
<td>15'45</td>
<td>18'18</td>
<td>17'27</td>
</tr>
<tr>
<td>B_2 I-te Serie</td>
<td>4'66</td>
<td>2'00</td>
<td>0'66</td>
<td>69'33</td>
<td>0'66</td>
<td>0'66</td>
<td>5'33</td>
<td>7'32</td>
<td>11'33</td>
<td>16'00</td>
</tr>
<tr>
<td>D_3 II-te Serie</td>
<td>2'00</td>
<td>0'67</td>
<td>0'67</td>
<td>21'34</td>
<td>0'67</td>
<td>0'67</td>
<td>8'00</td>
<td>9'33</td>
<td>28'00</td>
<td>67'00</td>
</tr>
</tbody>
</table>

Der Anteil des Weissbuchenpollens nimmt allmählich zu, wird gleich dem des *Quercetum mixtum*, darauf übertrifft er den Antei

1) Rudolph und Firbas (16) haben durch die pollenanalytische Untersuchung des Oberflächentorfes gezeigt, dass sogar aus dem 20%igen Anteil des Kiefernpollens nicht der Schluss gezogen werden darf, dass diese Gattung wirklich in der näheren Umgebung des in Frage kommenden Torfmoores vorhanden war. Ein so hoher Anteil dieses leicht übertragbaren Pollens kann auf die Rechnung des Windtransports gesetzt werden.
des *Quercetum mixtum* mehr als zweimal. In der Probe aus der III-ten Serie herrscht die Weißbuche entschieden vor, es erreicht nämlich 67%o. Ausser dem Pollen der Weißbuche kommt das obenerwähnte *Quercetum mixtum* mit einem Übergewicht vom Lindenpollen vor; die Hasel tritt in einem grösseren Quantum auf, dazu noch geringe Mengen der Birke, Fichte und Kiefer. (Das Vorkommen des Kieferpollens ist vielleicht nur dem Windtransport aus grösserer Entfernung zu verdanken).

Der Anteil des Erlenpollens in den Proben von 600 m des Kollektorprofils ist fortwährend gross. In anderen Proben, die von ähnlichen Verhältnissen in der Pollenflora zeugen, also aus ungefähr derselben Zeit stammen, ist dagegen der Anteil des Erlenpollens bedeutend kleiner.

Andere mikroskopischen Pflanzenreste:

Nuphar luteum L. Pollen
Typha sp. Pollen
Athyrium filix femina Roth. Sporen

Die Ergebnisse der Pollenanalyse des oberen Teiles der B-Schicht (*B₁*) sind ganz anders ausgefallen:

<table>
<thead>
<tr>
<th></th>
<th>Pinus %</th>
<th>Picea %</th>
<th>Abies %</th>
<th>Betula %</th>
<th>Alnus %</th>
<th>Tilia %</th>
<th>Quercetum mixtum %</th>
<th>Corylus %</th>
<th>Carpinus %</th>
<th>Fagus %</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁ I-te Serie</td>
<td>802</td>
<td>1790</td>
<td>925</td>
<td>061</td>
<td>5987</td>
<td>123</td>
<td>123</td>
<td>061</td>
<td>246</td>
<td>030</td>
</tr>
<tr>
<td>C₂ III-te Serie</td>
<td>2200</td>
<td>6000</td>
<td>800</td>
<td></td>
<td>667</td>
<td></td>
<td></td>
<td></td>
<td>267</td>
<td>007</td>
</tr>
</tbody>
</table>

Der Anteil des Fichtenpollens erreicht im zweiten Spektrum 60%o, während der des Erlenpollens viel niedriger ist (67%o). *Quercetum mixtum* wird nur durch eine geringe Menge des Lindenpollens ver-

Das vollständige Fehlen in der Schicht C₃ der III-ten Serie des Pollens von Quercetum mixtum und der Hasel beweist, dass die genannte Schicht aus etwas späterer Zeit stammt, als B₁ der I-ten Serie.

Andere mikroskopisch nachgewiesene Pflanzen:

Nuphar luteum L. Pollen
Typha sp. Pollen
Lycopodium annotinum L. Sporen
Lycopodium clavatum L. Sporen
Dryopteris filix mas L. Sporen
Athyrium filix femina Roth. . . . Sporen

Das Pollenspektrum der Schicht A des Moostorfes wird durch das Vorherrschen der Kiefer bei einem schwachen Anteil der Fichte, Birke und Erle charakterisiert.

<table>
<thead>
<tr>
<th></th>
<th>Pinus ₀/₀</th>
<th>Picea ₀/₀</th>
<th>Betula ₀/₀</th>
<th>Alnus ₀/₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>A I-ten Serie</td>
<td>93·3</td>
<td>2·7</td>
<td>3·3</td>
<td>0·7</td>
</tr>
<tr>
<td>A III-ten Serie</td>
<td>94·7</td>
<td>4·0</td>
<td>0·7</td>
<td>0·7</td>
</tr>
</tbody>
</table>

Andere Pflanzen:

Ericaceae Pollen
Lycopodium annotinum L. . . . Sporen
Pteridium aquilinum L. . . . Sporen
Athyrium filix femina Roth. . . Sporen

Die Resultate der Pollenanalyse der I-ten Serie der Proben der See- und Torfbildungen aus Žolíborz habe ich in einem Diagramm (Fig. 39) zusammengestellt, das aber nicht vollständig in der für die Diagramme der Pollenanalyse üblichen Weise gezeichnet wurde. Es fehlten mir nämlich die genauen Angaben über die Tiefen, aus welchen die durch mich geprüften Proben entnommen wurden; nur die Mächtigkeit der in Frage kommenden Ablagerungen und der einzelnen Schichten war mir bekannt. Ich verfügte ausserdem über die Angaben, aus welchen Niveaus der Schichten ungefähr die Proben
stammten. Ich habe darum das Diagramm so konstruiert, dass die Lage der Pollenspektren wahrscheinlich nur annähernd den wirklichen Tiefen der untersuchten Proben entspricht.

Schlussfolgerungen.

II-te Phase — der Eichenmischwald (Quercetum mixtum). In der Waldflora erscheinen die Vertreter der Laubbäume; die früher überwiegenden Kiefer (Pinus) und Birke (Betula) werden durch die Vertreter des Eichenmischwaldes verdrängt und verschwinden schliesslich fast vollständig. Der Eichenmischwald wird hauptsächlich aus Eichen und Lindern zusammengesetzt (Tilia cordata Mill., Tilia platyphyllos Scop.), mit einer geringen Beimischung der Ulme (Ulmus). Die Hasel (Corylus avellana) bildete wahrscheinlich einen starken Unterwuchs.

In dieser Phase kann man zwei Unterphasen unterscheiden. Am Anfang bildet den Hauptbestandteil des Eichenmischwaldes die Eiche (Quercus). Darauf nimmt der Anteil dieses Baumes, sowie der der Hasel (Corylus) ab, der Anteil der Linde (Tilia) nimmt zu, so dass schliesslich diese letztere die dominierende Gattung im Wald wird. In dieser Zeit erscheint eine neue Gattung: die Weissbuche (Carpinus); die Erle (Alnus) wächst in grossen Beständen. In dieser Phase der Entwicklung der Wälder des Interglazials lässt sich die grösste Zahl der Gattungen, aus denen sie sich zusammensetzten, feststellen.

III-te Phase — der Weissbuchenwald (Carpinetum). Die Weissbuche wird allmählich zum wichtigsten Bestandteil der Wälder; es gesellen sich dazu in einer ziemlich grossen Anzahl die Gattungen des Eichenmischwaldes, hauptsächlich die Linde (Tilia). Die Erle (Alnus) wächst weiter unter offenbar günstigen Lebensbedingungen.

IV-te Phase — der Fichtenwald (Piceetum). Der Weissbuchenwald macht den Nadelhölzern Platz, unter denen die Fichte (Picea) vorherrscht. Ausser der Fichte (Picea) ist die Tanne (Abies) verhält-
nismässig viel verbreitet. Sie erscheint nur in dieser Phase der Waldentwicklung.

V-te Phase — der Kieferwald (*Pinetum*). Es tritt wieder eine sichtliche Änderung in der Waldflora ein. Der Wald behält weiterhin den Charakter des Nadelwaldes mit dem Unterschied, dass die Kiefer zum zweiten Mal seinen wichtigsten Bestandteil ausmacht. Die Fichte sowie die Birke stellen nur eine unbedeutende Beimischung dar.

Um die von mir erhaltenen Resultate der Pollenanalyse der Bildungen von Žoliborz mit den bisherigen Ergebnissen der Untersuchungen über die Diluvialflora zu vergleichen, muss ich zuerst das dänische Interglazial in Betracht ziehen.

Alle bis jetzt floristisch untersuchten Interglazialablagerungen aus Polen (mit der Ausnahme der Bildungen aus Rzeszów, Jędrzejówka, Starunia, Hwozd 1) und der fossilien Torfe aus Timoszkowice (10), deren Alter noch nicht bestimmt wurde), sind dem vorletzten Interglazial (*M i n d e l-R i s s*) zugerechnet worden.

1) Szaf er, W.. Zarys stratygrafji polskiego dyluwjum (19).
in dem dänischen Interglazial nachgewiesen worden. In Nordwest-
deutschland sind aber in den Ablagerungen aus dem letzten Inter-
glazial die Reste von *Abies alba* Mill. gefunden worden. Sie traten
zusammen mit den Resten der für den Eichenmischwald charakteri-
stischen Baumgattungen auf.

Die Übereinstimmung zwischen dem Zoliborzer und dem däni-
schen Interglazial erlaubt mir die Vermutung, dass die Änderungen in
der Flora der Umgebung von Warschau nicht nur durch den Wechsel
der lokalen Bedingungen veranlasst wurden, sondern dass sie im
Zusammenhang mit den allgemeinen Veränderungen des Klimas stan-
den, welche denjenigen von Dänemark und Nordwestdeutschland
analog waren.

Unter dieser Voraussetzung dürften die klimatischen Bedingun-
gen in den einzelnen Phasen der Waldentwicklung in der Gegend
von Warschau folgende gewesen sein:

I Phase — der Birken- und Kieferwald (*Betuletum, Pinetum*) —
kaltet Klima des kontinentalen Typus. Die Fichte (*Picea*) kommt in
dieser Phase nur sporadisch vor und fehlt vollständig am Anfange
der folgenden Phase, eine Erscheinung, die durch *Jessen* und *Mil-
thers* auch in dem letzten Interglazial Dänemarks nachgewiesen
wurde. Diese Forscher vermuten, dass die Ursache des plötzlichen
Verschwindens der Fichte in dem schnellen Übergang vom kalten
kontinentalen Klima zu dem für *Picea excelsa* nicht günstigen warmen,
atlantischen Klima zu suchen sei.

II Phase — der Eichenmischwald (*Quercetum mixtum*); das Klima
hat sein Optimum erreicht; das Klima dieser Phase, am Anfange
warm und trocken, nahm später einen ausgesprochen atlantischen
Charakter an.

III Phase — der Weissbuchenwald (*Carpinetum*); in dieser Zeit
ist nach *Jessen* und *Mithers* das anfänglich atlantische Klima
in ein kühleres, für Nadelhölzer günstiges Klima übergegangen.

IV Phase — der Fichtenwald (*Piceetum*); kühleres Klima.

V Phase — Kiefernwald (*Pinetum*); kühles kontinentales Klima.

Das von *W. Poliński* (13) auf Grund der Untersuchung der
malakologischen Fauna des Interglazials von Zoliborz aufgestellte
Schema der Klimaveränderungen in dieser Epoche in der Umgebung
von Warschau stimmt in grossen Zügen mit den Ergebnissen meiner
Analyse überein. Der Unterschied liegt darin, dass *W. Poliński*
dem Klima einen kühleren und feuchteren Charakter zuschreibt.
Zum Schluss dieser Arbeit möchte ich noch darauf hinweisen, dass die durch W. Szafer (20) untersuchte Flora aus der Umgegend von Grodno (Poniemuń, Żydowszczyzna, Samostrzelniki), die seiner Meinung nach aus dem vorletzten Interglazial (Mindel-Riss) stammt, nach K. Jessen und V. Milthers (7), wie auch nach Dokturowski (2) dem letzten Interglazial (Riss-Würm) angehört. Dieselbe Meinungsverschiedenheit herrscht anlässlich der Bildungen von Szeląg bei Poznań, die nach W. Szafer (19) aus dem vorletzten Interglazial und nach Dokturowski aus dem letzten Interglazial (Riss-Würm) stammen.

S. Kulczyński (10) zeigte, dass die Bildungen von Timoszkowice sich auch im jüngeren Interglazial (L₄—L₃) abgelagert haben mögen.

Im Zusammenhang mit den obwähnten Meinungen dürfte ein Vergleich der genannten Interglazialbildungen (Umgegend von Grodno, Szeląg, Timoszkowice) in floristischer Hinsicht mit denjenigen von Żoliborz hier wohl angebracht sein.

Die Untersuchungen aller diesen Bildungen haben zu ungefähr demselben Zyklus der Änderungen in der Waldflora geführt; die Flora des kalten Klimas (Betula, Pinus) hatte sich demnach in eine Flora des klimatischen Optimums mit der Linde an der Spitze (Tilia cordata und Tilia platyphyllos) umgewandelt, welche wieder einer Flora mit dem Übergewicht der Kiefer Platz gemacht hatte. Die Interglazialbildungen von Szeląg entstammen nur dem oberen Teil dieses Zyklus, vom klimatischen Optimum beginnend; in den Ablagerungen von Timoszkowice fehlt dagegen die zweite Phase des Vorherrschens der Kiefer (Pinus). Bei dem Vergleich der Sukzession der Waldflora dieser Standorte lassen sich folgende Abweichungen bemerken:

sie gar nicht gefunden. Dasselbe lässt sich über das Interglazial Riss-Würm in Dänemark, Nordwestdeutschland und Russland behaupten.

c) In den Bildungen von Grodno und Szeląg sieht man keine deutlich ausgeprägte Phase des Vorherrschens der Fichte Picea, die genannte Phase tritt ganz klar in dem Interglazial von Żoliborz, wie auch in dem Interglazial von Dänemark, Nordwestdeutschland und Russland zu Tage.

Ich füge noch eine Zusammenstellung der interessantesten Gattungen der Süßwasserflora hinzu, deren Reste sich in den oberviärten Bildungen vorhanden. Ich muss bemerken, dass die makroskopischen Reste der Pflanzen des Interglazials von Szeląg und Żoliborz noch fast gar nicht untersucht worden sind.

<table>
<thead>
<tr>
<th>P o l e n</th>
<th>Dänemark</th>
<th>Russland</th>
<th>Grodno</th>
<th>Timoszkowice</th>
<th>Szeląg</th>
<th>Żoliborz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrovanda vesiculosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasenia sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratophyllum sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Myriophyllum alternifol.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Najas sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stratiotes aloides</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Trapa natans</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Diese Arbeit ist in dem Institut der Pflanzenystematik der Warschauer Universität ausgeführt worden.

Ich möchte an dieser Stelle dem Herrn Prof. Dr. B. Hryniewiecki für die Anregung zur Bearbeitung dieses Themas und für wertvolle Hinweise während der Arbeit meinen herzlichen Dank aussprechen, sowie dem Herrn Prof. Dr. W. Szafer für die gütige Erlaubnis, die Methode der Pollenanalyse im Botanischen Institut der Krakauer Universität kennen lernen zu dürfen.

Literaturverzeichnis.

2. — Die interglaziale Flora in Russland. Geol. Fören. Förhand Bd. 51 h. 3 1929.

