Detection of Cross-Resistance Between Methotrexate and Azoles in Candida albicans and Meyerozyma guilliermondii: An In Vitro Study

Filip Franciszek Karuga, Katarzyna Góralska, Ewa Brzeziańska-Lasota

Abstract


In recent years, there has been a rapid increase in the incidence of Candida infections. The different species of the genus Candida vary in their virulence abilities and susceptibility to antifungal agents, depending on several external factors. The result of such modifications may be cross-resistance, which is understood as an acquired resistance to a certain antimicrobial agent after exposure to another drug. The aim of this study was to determine the possibility of cross-resistance between fluconazole, voriconazole, itraconazole, and methotrexate in Candida albicans and Meyerozyma guilliermondii (syn. Candida guilliermondii). Fifteen strains of M. guilliermondii and eight strains of C. albicans, including the standard strains, were tested. For all strains, the minimum inhibitory concentrations (MICs) for fluconazole, voriconazole, and itraconazole were determined before and after stimulation with methotrexate. The median MICs in M. guilliermondii before and after stimulation were 9.333 and 64 mg/L (p = 0.005) for fluconazole; 0.917 and 1.667 mg/L (p = 0.001) for itraconazole, respectively. No significant change in MIC was observed for voriconazole. For C. albicans strains, the median MICs before and after stimulation were 0.917 and 64 mg/L (p = 0.012) for fluconazole; 0.344 and 1.135 mg/L (p = 0.018) for voriconazole, respectively. There was no significant change in MIC values for itraconazole. Thus, this study demonstrates the presence of cross-resistance between voriconazole, itraconazole, fluconazole, and methotrexate for the selected strains. Methotrexate exposure induces different responses when certain drugs are used for various species. Therefore, if a patient was previously exposed to methotrexate, there may be a higher risk of treatment failure with fluconazole than with other azoles such as voriconazole for fungemia caused by M. guilliermondii or itraconazole for C. albicans infection.

Keywords


antifungal treatment; drug resistance; fluconazole; inhibitor

Full Text:

PDF XML (JATS)

References


Abolmaali, S. S., Tamaddon, A. M., & Dinarvand, R. (2013). A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemotherapy and Pharmacology, 71(5), 1115–1130. https://doi.org/10.1007/s00280-012-2062-0

Ademe, M., & Girma, F. (2020). Candida auris: From multidrug resistance to pan-resistant strains. Infection and Drug Resistance, 13, 1287–1294. https://doi.org/10.2147/IDR.S249864

Ahangarkani, F., Badali, H., Rezai, M. S., Shokohi, T., Abtahian, Z., Nesheli, H. M., Karami, H., Roilides, E., & Tamaddoni, A. (2019). Candidemia due to Candida guilliermondii in an immunocompromised infant: A case report and review of literature. Current Medical Mycology, 5(1), 32–36. https://doi.org/10.18502/cmm.5.1.535

Antonovics, J., Abbate, J. L., Baker, C. H., Daley, D., Hood, M. E., Jenkins, C. E., Johnson, L. J., Murray, J. J., Panjeti, V., Rudolf, V. H. W., Sloan, D., & Vondrasek, J. (2007). Evolution by any other name: Antibiotic resistance and avoidance of the e-word. PLoS Biology, 5(2), Article e30. https://doi.org/10.1371/journal.pbio.0050030

Arastehfar, A., Daneshnia, F., Najafzadeh, M. J., Hagen, F., Mahmoudi, S., Salehi, M., Zarrinfar, H., Namvar, Z., Zareshahrabadi, Z., Khodavaisy, S., Zomorodian, K., Pan, W., Theelen, B., Kostrzewa, M., Boekhout, T., & Lass-Flörl, C. (2020). Evaluation of molecular epidemiology, clinical characteristics, antifungal susceptibility profiles, and molecular mechanisms of antifungal resistance of Iranian Candida parapsilosis species complex blood isolates. Frontiers in Cellular and Infection Microbiology, 10, Article 206. https://doi.org/10.3389/fcimb.2020.00206

Arendrup, M. C., Meletiadis, J., Mouton, J. W., Lagrou, K., Hamal, P., & Guinea, J. (2020). EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.2. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/ EUCAST_E_Def_7.3.2_Yeast_testing_definitive_revised_2020.pdf

Bello, A. E., Perkins, E. L., Jay, R., & Efthimiou, P. (2017). Recommendations for optimizing methotrexate treatment for patients with rheumatoid arthritis. Open Access Rheumatology: Research and Reviews, 9, 67–79. https://doi.org/10.2147/OARRR.S131668

Ben-Ami, R. (2018). Treatment of invasive candidiasis: A narrative review. Journal of Fungi, 4(3), Article 97. https://doi.org/10.3390/jof4030097

Ben-Yaacov, R., Knoller, S., Caldwell, G. A., Becker, J. M., & Koltin, Y. (1994). Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrobial Agents and Chemotherapy, 38(4), 648–652. https://doi.org/10.1128/aac.38.4.648

Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. Infection and Drug Resistance, 10, 237–245. https://doi.org/10.2147/IDR.S118892

Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases – Estimate precision. Journal of Fungi, 3(4), Article 57. https://doi.org/10.3390/jof3040057

Brody, T. (2016). Inclusion/exclusion criteria, stratification, and subgroups – Part I. In Clinical trials (2nd ed., pp. 83–113). Academic Press. https://doi.org/10.1016/b978-0-12-804217-5.00004-7

Castanheira, M., Deshpande, L. M., Davis, A. P., Rhomberg, P. R., & Pfaller, M. A. (2017). Monitoring antifungal resistance in a global collection of invasive yeasts and molds: Application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 61(10), Article e00906-17. https://doi.org/10.1128/AAC.00906-17

Castillo-Bejarano, J. I., Tamez-Rivera, O., Mirabal-García, M., Luengas-Bautista, M., Montes-Figueroa, A. G., Fortes-Gutiérrez, S., & González-Saldaña, N. (2020). Invasive candidiasis due to Candida guilliermondii complex: Epidemiology and antifungal susceptibility testing from a third-level pediatric center in Mexico. Journal of the Pediatric Infectious Diseases Society, 9(3), 404–406. https://doi.org/10.1093/JPIDS/PIAA043

Choi, M. J., Won, E. J., Shin, J. H., Kim, S. H., Lee, W. G., Kim, M. N., Lee, K., Shin, M. G., Suh, S. P., Ryang, D. W., & Im, Y. J. (2016). Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrobial Agents and Chemotherapy, 60(6), 3653–3661. https://doi.org/10.1128/AAC.02652-15

Cleveland, A. A., Farley, M. M., Harrison, L. H., Stein, B., Hollick, R., Lockhart, S. R., Magill, S. S., Derado, G., Park, B. J., & Chiller, T. M. (2012). Changes in incidence and antifungal drug resistance in candidemia: Results from population-based laboratory surveillance in Atlanta and Baltimore, 2008–2011. Clinical Infectious Diseases, 55(10), 1352–1361. https://doi.org/10.1093/cid/cis697

Clinical and Laboratory Standards Institute. (2017). M27Ed4: Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th edition. https://clsi.org/standards/products/microbiology/documents/m27/

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine, 5(7). https://doi.org/10.1101/cshperspect.a019752

Cretella, D., Barber, K. E., King, S. T., & Stover, K. R. (2016). Comparison of susceptibility patterns using commercially available susceptibility testing methods performed on prevalent Candida spp. Journal of Medical Microbiology, 65(12), 1445–1451. https://doi.org/10.1099/jmm.0.000383

Delaloye, J., & Calandra, T. (2014). Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence, 5(1), 154–162. https://doi.org/10.4161/viru.26187

de Oliveira Santos, G. C., Vasconcelos, C. C., Lopes, A. J. O., de Sousa Cartágenes, M. d. S., Filho, A. K. D. B., do Nascimento, F. R. F., Ramos, R. M., Pires, E. R. R. B., de Andrade, M. S., Rocha, F. M. G., & de Andrade Monteiro, C. (2018). Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Frontiers in Microbiology, 9, Article 1351. https://doi.org/10.3389/fmicb.2018.01351

Deorukhkar, S. C., Saini, S., & Mathew, S. (2014). Non-albicans Candida infection: An emerging threat. Interdisciplinary Perspectives on Infectious Diseases, 2014, Article 615958. https://doi.org/10.1155/2014/615958

European Society of Clinical Microbiology and Infectious Diseases. (2020). EUCAST: Clinical breakpoints for antifungals. https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/

Guinea, J. (2014). Global trends in the distribution of Candida species causing candidemia. Clinical Microbiology and Infection, 20(6), 5–10. https://doi.org/10.1111/1469-0691.12539

Hagner, N., & Joerger, M. (2010). Cancer chemotherapy: Targeting folic acid synthesis. Cancer Management and Research, 2, 293–301. https://doi.org/10.2147/CMAR.S10043

Holmes, A. R., Cardno, T. S., Strouse, J. J., Ivnitski-Steele, I., Keniya, M. V., Lackovic, K., Monk, B. C., Sklar, L. A., & Cannon, R. D. (2016). Targeting efflux pumps to overcome antifungal drug resistance. Future Medicinal Chemistry, 8(12), 1485–1501. https://doi.org/10.4155/fmc-2016-0050

Huennekens, F. M. (1994). The methotrexate story: A paradigm for development of cancer chemotherapeutic agents. Advances in Enzyme Regulation, 34(C). https://doi.org/10.1016/0065-2571(94)90025-6

Jensen, R. H. (2016). Resistance in human pathogenic yeasts and filamentous fungi: Prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Danish Medical Journal, 63(10), Article B5288.

Jensen, R. H., Johansen, H. K., Søes, L. M., Lemming, L. E., Rosenvinge, F. S., Nielsen, L., Olesen, B., Kristensen, L., Dzajic, E., Astvad, K. M. T., & Arendrup, M. C. (2016). Posttreatment antifungal resistance among colonizing Candida isolates in candidemia patients: Results from a systematic multicenter study. Antimicrobial Agents and Chemotherapy, 60(3), 1500–1508. https://doi.org/10.1128/AAC.01763-15

Kohli, A., Gupta, V., Krishnamurthy, S., Hasnain, E., & Prasad, R. (2001). Specificity of drug transport mediated by CaMDR1: A major facilitator of Candida albicans. Journal of Biosciences, 26(3), 333–339. https://doi.org/10.1007/bf02703742

Marcos-Zambrano, L. J., Puig-Asensio, M., Pérez-García, F., Escribano, P., Sánchez-Carrillo, C., Zaragoza, O., Padilla, B., Cuenca-Estrella, M., Almirante, B., Martín-Gómez, M. T., Muñoz, P., Bouza, E., & Guinea, J. (2017). Candida guilliermondii complex is characterized by high antifungal resistance but low mortality in 22 cases of candidemia. Antimicrobial Agents and Chemotherapy, 61(7), Article e00099-17. https://doi.org/10.1128/AAC.00099-17

Matthaiou, D. K., Christodoulopoulou, T., & Dimopoulos, G. (2015). How to treat fungal infections in ICU patients. BMC Infectious Diseases, 15, Article 205. https://doi.org/10.1186/s12879-015-0934-8

Nakazawa, M., Paller, C., & Kyprianou, N. (2017). Mechanisms of therapeutic resistance in prostate cancer. Current Oncology Reports, 19(2), Article 13. https://doi.org/10.1007/s11912-017-0568-7

Nayak, R. R., Alexander, M., Stapleton-Grey, K., Ubeda, C., Scher, J. U., & Turnbaugh, P. J. (2019). Perturbation of the human gut microbiome by a non-antibiotic drug contributes to the resolution of autoimmune disease. BioRxiv. https://doi.org/10.1101/600155

Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., Reboli, A. C., Schuster, M. G., Vazquez, J. A., Walsh, T. J., Zaoutis, T. E., & Sobel, J. D. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1–e50. https://doi.org/10.1093/cid/civ933

Polańska, A., Dańczak-Pazdrowska, A., Żaba, R., & Adamski, Z. (2016). The use of methotrexate in the treatment of selected autoimmune connective tissue diseases-our own experience and review of the literature data. Forum Dermatologicum, 4(2), 165–170.

Rocha, M. F. G., Alencar, L. P., Paiva, M. A. N., Melo, L. M., Bandeira, S. P., Ponte, Y. B., Sales, J. A., Guedes, G. M. M., Castelo-Branco, D. S. C. M., Bandeira, T. J. P. G., Cordeiro, R. A., Pereira-Neto, W. A., Brandine, G. S., Moreira, J. L. B., Sidrim, J. J. C., & Brilhante, R. S. N. (2016). Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: An environmental resistance school? Mycoses, 59(5), 281–290. https://doi.org/10.1111/myc.12457

Roszkiewicz, J., Michałek, D., Ryk, A., Swacha, Z., Szmyd, B., & Smolewska, E. (2020). The impact of single nucleotide polymorphisms in ADORA2A and ADORA3 genes on the early response to methotrexate and presence of therapy side effects in children with juvenile idiopathic arthritis: Results of a preliminary study. International Journal of Rheumatic Diseases, 23(11), 1505–1513. https://doi.org/10.1111/1756-185X.13972

Roszkiewicz, J., Michałek, D., Ryk, A., Swacha, Z., Szmyd, B., & Smolewska, E. (2021). SLCO1B1 variants as predictors of methotrexate-related toxicity in children with juvenile idiopathic arthritis. Scandinavian Journal of Rheumatology, 50(3), 213–217. https://doi.org/10.1080/03009742.2020.1818821

Scorzoni, L., de Paula e Silva, A. C. A., Marcos, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal therapy: New advances in the understanding and treatment of mycosis. Frontiers in Microbiology, 8, Article 36. https://doi.org/10.3389/fmicb.2017.00036

Sharafutdinov, I. S., Ozhegov, G. D., Sabirova, A. E., Novikova, V. V., Lisovskaya, S. A., Khabibrakhmanova, A. M., Kurbangalieva, A. R., Bogachev, M. I., & Kayumov, A. R. (2020). Increasing susceptibility of drug-resistant Candida albicans to fluconazole and terbinafine by 2(5H)-furanone derivative. Molecules, 25(3), Article 642. https://doi.org/10.3390/molecules25030642

Sipsas, N. V., & Kontoyiannis, D. P. (2012). Invasive fungal infections in patients with cancer in the intensive care unit. International Journal of Antimicrobial Agents, 39(6), 464–471. https://doi.org/10.1016/j.ijantimicag.2011.11.017

Sulavik, M. C., Houseweart, C., Cramer, C., Jiwani, N., Murgolo, N., Greene, J., Didomenico, B., Shaw, K. J., Miller, G. H., Hare, R., & Shimer, G. (2001). Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrobial Agents and Chemotherapy, 45(4), 1126–1136. https://doi.org/10.1128/AAC.45.4.1126-1136.2001

Tseng, T.-Y., Chen, T.-C., Ho, C.-M., Lin, P.-C., Chou, C.-H., Tsai, C.-T., Wang, J.-H., Chi, C.-Y., & Ho, M.-W. (2018). Clinical features, antifungal susceptibility, and outcome of Candida guilliermondii fungemia: An experience in a tertiary hospital in mid-Taiwan. Journal of Microbiology, Immunology and Infection, 51(4), 552–558. https://doi.org/10.1016/j.jmii.2016.08.015

van Soest, R. J., De Morrée, E. S., Kweldam, C. F., de Ridder, C. M. A., Wiemer, E. A. C., Mathijssen, R. H. J., de Wit, R., & van Weerden, W. M. (2015). Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. European Urology, 67(6), 981–985. https://doi.org/10.1016/j.eururo.2014.11.033

Wiederhold, N. P. (2017). Antifungal resistance: Current trends and future strategies to combat. Infection and Drug Resistance, 10, 249–259. https://doi.org/10.2147/IDR.S124918

Wielinga, P., Hooijberg, J. H., Gunnarsdottir, S., Kathmann, I., Reid, G., Zelcer, N., van der Born, K., de Haas, M., van der Heijden, I., Kaspers, G., Wijnholds, J., Jansen, G., Peters, G., & Borst, P. (2005). The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Research, 65(10), 4425–4430. https://doi.org/10.1158/0008-5472.CAN-04-2810

Yang, J., Gao, L., Yu, P., Kosgey, J. C., Jia, L., Fang, Y., Xiong, J., & Zhang, F. (2019). In vitro synergy of azole antifungals and methotrexate against Candida albicans. Life Sciences, 235, Article 116827. https://doi.org/10.1016/j.lfs.2019.116827

Yapar, N. (2014). Epidemiology and risk factors for invasive candidiasis. Therapeutics and Clinical Risk Management, 10, 95–105. https://doi.org/10.2147/TCRM.S40160

Yeoh, S. F., Lee, T. J., Chew, K. L., Lin, S., Yeo, D., & Setia, S. (2018). Echinocandins for management of invasive candidiasis in patients with liver disease and liver transplantation. Infection and Drug Resistance, 11, 805–819. https://doi.org/10.2147/IDR.S165676




DOI: https://doi.org/10.5586/am.566

Journal ISSN:
  • 2353-074X (online)
  • 0001-625X (print; ceased since 2015)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society