Problems, Limitations, and Challenges in Species Identification of Ascomycota Members on the Basis of ITS Regions

Anna Baturo-Cieśniewska, Wojciech Pusz, Katarzyna Patejuk

Abstract


The internal transcribed spacer (ITS) region is regarded as a formal fungal primary barcode with a high probability of the correct identification for a broad group of fungi. ITS sequences have been widely used to determine many fungal species and analysis of rDNA ITS is still one of the most popular tools used in mycology. However, this region is not equally variable in all groups of fungi; therefore, identification may be problematic and result in ambiguous data, especially in some species-rich genera of Ascomycota. For these reasons, identification based on rDNA ITS is usually complemented by morphological observations and analysis of additional genes. Reliable species identification of Ascomycota members is essential in diagnosing plant diseases, verifying air quality and the effectiveness of agronomic practices, or analyzing relationships between microorganisms. Therefore, the present study aimed to verify, using specific examples, the extent to which ITS sequence analysis is useful in species identification of pathogens and saprobionts from Ascomycota and demonstrate problems related to such identification in practice. We analyzed 105 ITS sequences of isolates originating from air and plant material. Basic local alignment search tool (BLASTn) significantly contributed to the reliable species identification of nearly 80% of isolates such as Arthrinium arundinis, Beauveria bassiana, Boeremia exigua, Cladosporium cladosporioides, Epicoccum nigrum, Nigrospora oryzae, Sclerotinia sclerotiorum, or Sordaria fimicola and members of the genera Alternaria and Trichoderma. However, for most isolates, additional morphological observations, information regarding the isolate origin and, where possible, a PCR with species-specific primers were helpful and complementary. Using our practical approach, we determined that ITS-based species identification and comparative analysis with GenBank sequences significantly helps identifying Ascomycota members. However, in many cases, this should be regarded as suggestive of a taxon because the data usually require the use of additional tools to verify the results of such analysis.

Keywords


Ascomycota; fungi; internal transcribed spacer; molecular identification

Full Text:

PDF XML (JATS)

References


Andersen, B., Sørensen, J. L., Nielsen, K. F., van den Ende, B., & de Hoog, S. (2009). A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genetics and Biology, 46(9), 642–656. https://doi.org/10.1016/j.fgb.2009.05.005

Andersen, B., & Thrane, U. (1996). Differentiation of Altemaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics. Canadian Journal of Microbiology, 42(7), 685–689. https://doi.org/10.1139/m96-093

Andrew, M., Peever, T. L., & Pryor, B. M. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101(1), 95–109. https://doi.org/10.3852/08-135

Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., & Weightman, A. J. (2005). At least 1 in 20 26S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Applied and Environmental Microbiology, 71(12), 7724–7736. https://doi.org/10.1128/AEM.71.12.7724-7736.2005

Aveskamp, M. M., de Gruyter, J., Woudenberg, J. H. C., Verkley, G. J. M., & Crous, P. W. (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology, 65, 1–60. https://doi.org/10.3114/sim.2010.65.01

Aveskamp, M. M., Verkley, G. J., de Gruyter, J., Murace, M. A., Perelló, A., Woudenberg, J. H., Groenewald, J. Z., & Crous, P. W. (2009). DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia, 101(3), 363–382. https://doi.org/10.3852/08-199

Aveskamp, M. M., Woudenberg, J. H., Gruyter, J. D., Turco, E., Groenewald, J. Z., & Crous, P. W. (2009). Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): A case study in the Phoma exigua species complex. Molecular Plant Pathology, 10(3), 403–414. https://doi.org/10.1111/j.1364-3703.2009.00540.x

Barron, G. L. (1972). The genera of Hyphomycetes from soil. Robert E. Krieger Publishing Corporation.

Baturo-Ciesniewska, A., Groves, C. L., Albrecht, K. A., Grau, C. R., Willis, D. K., & Smith, D. L. (2017). Molecular identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum isolates from the United States and Poland. Plant Disease, 101(1), 192–199. https://doi.org/10.1094/PDIS-06-16-0896-RE

Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), Article 189. https://doi.org/10.1186/1471-2180- 10-189

Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium.

Studies in Mycology, 72, 1–401. https://doi.org/10.3114/sim0003

Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Ž. Jurjević, Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. Studies in Mycology, 89, 177–301. https://doi.org/10.1016/j.simyco.2018.03.002

Bidartondo, M. I. (2008). Preserving accuracy in GenBank. Science, 319(5870), 1616. https://doi.org/10.1126/science.319.5870.1616a

Binder, M., Hibbett, D. S., Larsson, K.-H., Larsson, E., Langer, E., & Langer, G. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroom- forming fungi (Homobasidiomycetes). Systematics and Biodiversity, 3(2), 113–157. https://doi.org/10.1017/S1477200005001623

Błaszczyk, L., Popiel, D., Chełkowski, J., Koczyk, G., Samuels, G. J., Sobieralski, K., & Siwulski, M. (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52(2), 233–243. https://doi.org/10.1007/s13353-011-0039-z

Bridge, P. D., Spooner, B. M., & Roberts, P. J. (2005). The impact of molecular data in fungal systematics. Advances in Botanical Research, 42, 33–67. https://doi.org/10.1016/S0065- 2296(05)42002-9

Chaverri, P., & Samuels, G. J. (2003). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Centraalbureau voor Schimmelcultures.

Chehri, K., Salleh, B., Yli-Mattila, T., Reddy, K. R. N., & Abbasi, S. (2011). Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah Province, Iran. Saudi Journal of Biological Sciences, 18(4), 341–351. https://doi.org/10.1016/j.sjbs.2011.01.007

Chlebicki, A. (2008). Some overlooked and rare xylariaceous fungi from Poland. Polish Botanical Journal, 53(1), 71–80.

Crous, P. W., & Groenewald, J. Z. (2013). A phylogenetic re-evaluation of Arthrinium. IMA Fungus, 4(1), 133–154. https://doi.org/10.5598/imafungus.2013.04.01.13

Crous, P. W., Hawksworth, D. L., & Wingfield, M. J. (2015). Identifying and naming plant- pathogenic fungi: Past, present, and future. Annual Review of Phytopathology, 53(1), 247–267. https://doi.org/10.1146/annurev-phyto-080614-120245

Crous, P. W., Quaedvlieg, W., Hansen, K., Hawksworth, D. L., & Groenewald, J. Z. (2014). Phacidium and Ceuthospora (Phacidiaceae) are congeneric: Taxonomic and nomenclatural implications. IMA Fungus, 5(2), 173–193. https://doi.org/10.5598/imafungus.2014.05.02.02

de Hoog, G., & Horré, R. (2002). Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45(7– 8), 259–276. https://doi.org/10.1046/j.1439-0507.2002.00747.x

Domsch, K. H., Gams, W., & Andersen, T. H. (1980). Compendium of soil fungi. Academic Press.

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15. Druzhinina, I. S., Kopchinskiy, A. G., Komoń, M., Bissett, J., Szakacs, G., & Kubicek, C. P. (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology, 42(10), 813–828. https://doi.org/10.1016/j.fgb.2005.06.007

Freeman, J., Ward, E., Calderon, C., & McCartney, A. (2002). A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 108(9), 877–886. https://doi.org/10.1023/A:1021216720024

González, V., Aguado, A. M., & Garcés-Claver, A. (2019). First report of Fusarium oxysporum causing wilt and root rot in common borage (Borago officinalis) in Spain. Plant Disease, 103(7), Article 1774. https://doi.org/10.1094/PDIS-02-19-0259-PDN

Henry, T., Iwen, P. C., & Hinrichs, S. H. (2000). Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. Journal of Clinical Microbiology, 38(4), 1510–1515. https://doi.org/10.1128/JCM.38.4.1510-1515.2000

Hongsanan, S., Jeewon, R., Purahong, W., Xie, N., Liu, J.-K., Jayawardena, R. S., Ekanayaka, A. H., Dissanayake, A., Raspé, O., Hyde, K. D., Stadler, M., & Peršoh, D. (2018). Can we use environmental DNA as holotypes? Fungal Diversity, 92(1), 1–30. https://doi.org/10.1007/s13225-018-0404-x

Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 10(8), 1855–1871. https://doi.org/10.1046/j.0962-1083.2001.01333.x

Houbraken, J., de Vries, R., & Samson, R. A. (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. In S. Sariaslani & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 86, pp. 199–249). Academic Press. https://doi.org/10.1016/B978-0-12-800262-9.00004-4

Houbraken, J., Visagie, C. M., Meijer, M., Frisvad, J. C., Busby, P. E., Pitt, J. I., Seifert, K. A., Louis-Seize, G., Demirel, R., Yilmaz, N., Jacobs, K., Christensen, M., & Samson, R. A. (2014). A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Studies in Mycology, 78, 373–451. https://doi.org/10.1016/j.simyco.2014.09.002

Hyde, K. D., Jones, E. B. G., Liu, J.-K., Ariyawansa, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P. W., Dai, D.-Q., Diederich, P., Dissanayake, A., Doilom, M., Doveri, F., Hongsanan, S., Jayawardena, R., Lawrey, J. D., Li, Y.-M., Liu, Y.-X., … Zhang, M. (2013). Families of Dothideomycetes. Fungal Diversity, 63(1), 1–313. https://doi.org/10.1007/s13225-013-0263-4

Ingle, A. P. (2017). Diversity and identity of Fusarium species occurring on fruits, vegetables and food grains. Nusantara Bioscience, 9(1), 44–51. https://doi.org/10.13057/nusbiosci/n090108

Irinyi, L., Serena, C., Garcia-Hermoso, D., Arabatzis, M., Desnos-Ollivier, M., Vu, D., Cardinali, G., Arthur, I., Normand, A.-C., Giraldo, A., da Cunha, K. C., Sandoval- Denis, M., Hendrickx, M., Nishikaku, A. S., de Azevedo Melo, A. S., Merseguel, K. B., Khan, A., Rocha, J. A. P., Sampaio, P., … Meyer, W. (2015). International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database – the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 53(4), 313–337. https://doi.org/10.1093/mmy/myv008

Jaklitsch, W. M. (2009). European species of Hypocrea part I. The green-spored species. Studies in Mycology, 63, 1–91. https://doi.org/10.3114/sim.2009.63.01

Jaklitsch, W. M. (2011). European species of Hypocrea part II: Species with hyaline ascospores. Fungal Diversity, 48(1), 1–250. https://doi.org/10.1007/s13225-011-0088-y

Jaklitsch, W. M., Samuels, G. J., Dodd, S. L., Lu, B.-S., & Druzhinina, I. S. (2006). Hypocrea rufa/Trichoderma viride: A reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology, 56, 135–177. https://doi.org/10.3114/sim.2006.56.04

Jaklitsch, W. M., & Voglmayr, H. (2015). Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology, 80, 1–87. https://doi.org/10.1016/j.simyco.2014.11.001

Jayasiri, S. C., Hyde, K. D., Ariyawansa, H. A., Bhat, J., Buyck, B., Cai, L., Dai, Y.-C., Abd-Elsalam, K. A., Ertz, D., Hidayat, I., Jeewon, R., Jones, E. B. G., Bahkali, A. H., Karunarathna, S. C., Liu, J.-K., Luangsa-ard, J. J., Lumbsch, H. T., Maharachchikumbura, S. S. N., McKenzie, E. H. C., … Promputtha, I. (2015). The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity, 74(1), 3–18. https://doi.org/10.1007/s13225-015-0351-8

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581

Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 1811–1811. https://doi.org/10.1073/pnas.1207143109

Ko, T. W. K., Stephenson, S. L., Bahkali, A. H., & Hyde, K. D. (2011). From morphology to molecular biology: Can we use sequence data to identify fungal endophytes? Fungal Diversity, 50(1), Article 113. https://doi.org/10.1007/s13225-011-0130-0

Koukol, O., Pusz, W., & Minter, D. (2015). A new species of Lophodermium on needles of mountain pine (Pinus mugo) from the Giant Mountains in Poland. Mycological Progress, 14(5), Article 23. https://doi.org/10.1007/s11557-015-1038-y

Kredics, L., Chen, L., Kedves, O., Büchner, R., Hatvani, L., Allaga, H., Nagy, V., Khaled, J. M., Alharbi, N. S., & Vágvölgyi, C. (2018). Molecular tools for monitoring trichoderma in agricultural environments. Frontiers in Microbiology, 9, Article 1599. https://doi.org/10.3389/fmicb.2018.01599

Kulik, T. (2008). Detection of Fusarium tricinctum from cereal grain using PCR assay. Journal of Applied Genetics, 49(3), 305–311. https://doi.org/10.1007/BF03195628

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

Lawrence, D. P., Gannibal, P. B., Dugan, F. M., & Pryor, B. M. (2014). Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov. Mycological Progress, 13(2), 257–276. https://doi.org/10.1007/s11557-013-0910-x

Lawrence, D. P., Gannibal, P. B., Peever, T. L., & Pryor, B. M. (2013). The sections of Alternaria: Formalizing species-group concepts. Mycologia, 105(3), 530–546. https://doi.org/10.3852/12-249

Leslie, J. F., & Summerell, B. A. (Eds.). (2006). The Fusarium laboratory manual. John Wiley & Sons. https://doi.org/10.1002/9780470278376

Liew, E. C. Y., Aptroot, A., & Hyde, K. D. (2000). Phylogenetic significance of the pseudoparaphyses in loculoascomycete taxonomy. Molecular Phylogenetics and Evolution, 16(3), 392–402. https://doi.org/10.1006/mpev.2000.0801

Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P. M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J. L., Coca, L. F., & Lawrey, J. D. (2014). A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11091–11096. https://doi.org/10.1073/pnas.1403517111

Marcinkowska, J. (2016). Rodzaj Phoma w świetle najnowszych zmian taksonomicznych [Genus Phoma according to the newest taxonomic changes]. Progress in Plant Protection, 56(2), 204–211. https://doi.org/10.14199/ppp-2016-034

Martin, K. J., & Rygiewicz, P. T. (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology, 5(1), Article 28. https://doi.org/10.1186/1471-2180-5-28

McKenzie, E. (2013). Boeremia exigua. PaDIL. http://www.padil.gov.au/maf-border/pest/ main/142998/50881

Meyer, W., Irinyi, L., Hoang, M. T. V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.-C., Lee, C.-Y., Woo, P. C., Pchelin, I. M., Uhrlaß, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P. D., & Sorrell, T. C. (2019). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome, 62(3), 160–169. https://doi.org/10.1139/gen-2018-0083

Mishra, P. K., Fox, R. T., & Culham, A. (2003). Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters, 218(2), 329–332. https://doi.org/10.1111/j.1574-6968.2003.tb11537.x

Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., & Joyce, D. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53(1), 17–37. https://doi.org/10.1006/pmpp.1998.0170

Nilsson, R. H., Hyde, K. D., Pawłowska, J., Ryberg, M., Tedersoo, L., Aas, A. B., Alias, S. A., Alves, A., Anderson, C. L., Antonelli, A., Arnold, A. E., Bahnmann, B., Bahram, M., Bengtsson-Palme, J., Berlin, A., Branco, S., Chomnunti, P., Dissanayake, A., Drenkhan, R., … Abarenkov, K. (2014). Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 67(1), 11–19. https://doi.org/10.1007/s13225-014-0291-8

Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics, 4, 193–201. https://doi.org/10.4137/EBO.S653

Nilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259–D264. https://doi.org/10.1093/nar/gky1022

Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.x

Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K. H., & Kõljalg, U. (2006). Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective. PLoS One, 1(1), Article e59. https://doi.org/10.1371/journal.pone.0000059

Nilsson, R. H., Tedersoo, L., Abarenkov, K., Ryberg, M., Kristiansson, E., Hartmann, M., Schoch, C. L., Nylander, J. A. A., Bergsten, J., Porter, T. M., Jumpponen, A., Vaishampayan, P., Ovaskainen, O., Hallenberg, N., Bengtsson-Palme, J., Eriksson, K. M., Larsson, K.-H., Larsson, E., & Kõljalg, U. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 4, 37–63. https://doi.org/10.3897/mycokeys.4.3606

Njambere, E. N., Chen, W., Frate, C., Wu, B.-M., Temple, S. R., & Muehlbauer, F. J. (2008). Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Disease, 92(6), 917–922. https://doi.org/10.1094/PDIS-92-6-0917

O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103–116. https://doi.org/10.1006/mpev.1996.0376

Pastor, F. J., & Guarro, J. (2008). Alternaria infections: Laboratory diagnosis and relevant clinical features. Clinical Microbiology and Infection, 14(8), 734–746. https://doi.org/10.1111/j.1469-0691.2008.02024.x

Peterson, S. W. (2004). Multilocus DNA sequence analysis shows that Penicillium biourgeianum is a distinct species closely related to P. brevicompactum and P. olsonii. Mycological Research, 108(4), 434–440. https://doi.org/10.1017/S0953756204009761

Pryor, B. M., & Michailides, T. J. (2002). Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology, 92(4), 406–416. https://doi.org/10.1094/PHYTO.2002.92.4.406

Pusz, W., Baturo-Cieśniewska, A., & Zwijacz-Kozica, T. (2018). The mycobiota of discoloured needles of the Swiss stone pine (Pinus cembra L.) in the Tatra Mountains (Poland). Journal of Mountain Science, 15(12), 2614–2621. https://doi.org/10.1007/s11629-018- 4926-1

Reignoux, S. N., Green, S., & Ennos, R. A. (2014). Molecular identification and relative abundance of cryptic Lophodermium species in natural populations of Scots pine, Pinus sylvestris L. Fungal Biology, 118(9), 835–845. https://doi.org/10.1016/j.funbio.2014.07.002

Robbertse, B., Strope, P. K., Chaverri, P., Gazis, R., Ciufo, S., Domrachev, M., & Schoch, C. L. (2017). Improving taxonomic accuracy for fungi in public sequence databases: Applying “one name one species” in well-defined genera with Trichoderma/Hypocrea as a test case. Database, 2017, Article bax072. https://doi.org/10.1093/database/bax072

Ryberg, M., Kristiansson, E., Sjökvist, E., & Nilsson, R. H. (2009). An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web- based tool for the exploration of fungal diversity. New Phytologist, 181(2), 471–477. https://doi.org/10.1111/j.1469-8137.2008.02667.x

Ryberg, M., Nilsson, R. H., Kristiansson, E., Töpel, M., Jacobsson, S., & Larsson, E. (2008). Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota). BMC Evolutionary Biology, 8(1), Article 50. https://doi.org/10.1186/1471-2148-8-50

Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004

Samuels, G. J., Dodd, S. L., Lu, B.-S., Petrini, O., Schroers, H.-J., & Druzhinina, I. S. (2006). The Trichoderma koningii aggregate species. Studies in Mycology, 56, 67–133. https://doi.org/10.3114/sim.2006.56.03

Schilling, A. G., Moller, E. M., & Geiger, H. H. (1996). Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum and F. avenaceum. Phytopathology, 86, 515–522. https://doi.org/10.1094/Phyto-86-515

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109

Schubert, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., Starink, M., Hill, C. F., Zalar, P., de Hoog, G., & Crous, P. W. (2007). Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology, 58, 105–156. https://doi.org/10.3114/sim.2007.58.05

Scott, J. A., Wong, B., Summerbell, R. C., & Untereiner, W. A. (2008). A survey of Penicillium brevicompactum and P. bialowiezense from indoor environments, with commentary on the taxonomy of the P. brevicompactum group. Botany, 86(7), 732–741. https://doi.org/10.1139/B08-060

Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9(S1), 83–89. 10.1111/j.1755-0998.2009.02635.x

Skouboe, P., Frisvad, J. C., Taylor, J. W., Lauritsen, D., Boysen, M., & Rossen, L. (1999). Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research, 103(7), 873–881. https://doi.org/10.1017/S0953756298007904

Somma, S., Amatulli, M. T., Masiello, M., Moretti, A., & Logrieco, A. F. (2019). Alternaria species associated to wheat black point identified through a multilocus sequence approach. International Journal of Food Microbiology, 293, 34–43. https://doi.org/10.1016/j.ijfoodmicro.2019.01.001

Stielow, J. B., Lévesque, C. A., Seifert, K. A., Meyer, W., Irinyi, L., Smits, D., Renfurm, R., Verkley, G. J. M., Groenewald, M., Chaduli, D., Lomascolo, A., Welti, S., Lesage- Meessen, L., Favel, A., Al-Hatmi, A. M. S., Damm, U., Yilmaz, N., Houbraken, J., Lombard, L., … Robert, V. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia, 35(1), 242–263. https://doi.org/10.3767/003158515X689135

Susca, A., Stea, G., Mulè, G., & Perrone, G. (2007). Polymerase chain reaction (PCR) identification of Aspergillus niger and Aspergillus tubingensis based on the calmodulin gene. Food Additives and Contaminants, 24(10), 1154–1160. https://doi.org/10.1080/02652030701546206

Talgø, V., Chastagner, G., Thomsen, I. M., Cech, T., Riley, K., Lange, K., Klemsdal, S. S., & Stensvand, A. (2010). Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.). Fungal Biology, 114(7), 545–554. https://doi.org/10.1016/j.funbio.2010.04.005

Tanney, J. B., & Seifert, K. A. (2018). Phacidiaceae endophytes of Picea rubens in Eastern Canada. Botany, 96(9), 555–588. https://doi.org/10.1139/cjb-2018-0061

Turner, A. S., Lees, A. K., Rezanoor, H. N., & Nicholson, P. (1998). Refinement of PCR- detection of Fusarium avenaceum and evidence from DNA marker studies for phenetic relatedness to Fusarium tricinctum. Plant Pathology, 47(3), 278–288. https://doi.org/10.1046/j.1365-3059.1998.00250.x

Vajna, L. (2002). Diaporthe oncostoma causing stem canker of black locust in Hungary. Plant Pathology, 51(3), 393–393. https://doi.org/10.1046/j.1365-3059.2002.00706.x

van Baarlen, P., Staats, M., & van Kan, J. (2004). Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Molecular Plant Pathology, 5(6), 559–574. https://doi.org/10.1111/j.1364-3703.2004.00253.x

van Maanen, A., & Gourbière, F. (1997). Host and geographical distribution of Verticicladium trifidum, Thysanophora penicillioides, and similar fungi on decaying coniferous needles. Canadian Journal of Botany, 75(5), 699–710. https://doi.org/10.1139/b97-079

Visagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., Amend, A. S., Seifert, K. A., & Samson, R. A. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology, 78, 63–139. https://doi.org/10.1016/j.simyco.2014.07.002

Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343–371. https://doi.org/10.1016/j.simyco.2014.09.001

Vitale, S., Santori, A., Wajnberg, E., Castagnone-Sereno, P., Luongo, L., & Belisario, A. (2011). Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Phytopathology, 101(6), 679–686. https://doi.org/10.1094/PHYTO-04-10-0120

Vleugels, T., de Riek, J., Heungens, K., van Bockstaele, E., & Baert, J. (2012). Genetic diversity and population structure of Sclerotinia species from European red clover crops. Journal of Plant Pathology, 94(3), 493–503. https://doi.org/10.4454/JPP.FA.2012.051

Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J. Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P. W., Robert, V., & Verkley, G. J. M. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology, 92, 135–154. https://doi.org/10.1016/j.simyco.2018.05.001

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols (pp. 315–322). Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene, N. N., Hyde, K. D., Rajeshkumar, K. C., Hawksworth, D. L., Madrid, H., Kirk, P. M., Braun, U., Singh, R. V., Crous, P. W., Kukwa, M., Lücking, R., Kurtzman, C. P., Yurkov, A., Haelewaters, D., Aptroot, A., Lumbsch, H. T., Timdal, E., Ertz, D., Etayo, J., … Karunarathna, S. C. (2017). Notes for genera: Ascomycota. Fungal Diversity, 86(1), 1–594. https://doi.org/10.1007/s13225-017-0386-0

Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

Wilson, A., Simpson, D., Chandler, E., Jennings, P., & Nicholson, P. (2004). Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae. FEMS Microbiology Letters, 233(1), 69–76. https://doi.org/10.1016/j.femsle.2004.01.040

Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75, 171–212. https://doi.org/10.3114/sim0015

Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., de Vries, M., Stielow, J. B., Thomma, B. P. H. J., & Crous, P. W. (2015). Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82, 1–21. https://doi.org/10.1016/j.simyco.2015.07.001

Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913–932. https://doi.org/10.1139/gen- 2016-0046

Yahr, R., Schoch, C. L., & Dentinger, B. T. M. (2016). Scaling up discovery of hidden diversity in fungi: Impacts of barcoding approaches. Philosophical Transactions of the Royal Society B, 371, Article 20150336. https://doi.org/10.1098/rstb.2015.0336