Can the soil geology and chemistry analysis of a site predict the geographic origin of wild edible mushrooms (Porcini group)?

Elia Ambrosio, Pietro Marescotti, Gian Maria Niccolò Benucci, Grazia Cecchi, Michele Brancucci, Mirca Zotti, Mauro Giorgio Mariotti


This study aimed to assess the element content of Porcini mushrooms collected from broadleaf Mediterranean forests (NW Italy) and underlying soil layers, and to elucidate the chemical connection between the mushrooms and their geographic site of origin. Comparing the elements in mushrooms with those in soil samples, we observed that the concentration of some microelements detected in mushrooms had similar distribution as that measured in both the soil layers assessed, especially with surface soil. Statistical analyses showed that the microelement pattern in mushrooms reflects the soil site of origin. Moreover, by comparing our results with other studies, we observed that the soil where Porcini grow is characterized by a high concentration of zinc. Some toxic elements were also detected in mushroom samples. Analysis of elements in mushrooms and soil layers can be used for quality assurance of natural products and help distinguish them from uncertified and unknown-origin products.


wild edible mushrooms; Boletus edulis group; traceability; soil element content; mushroom safety

Full Text:



Demirbas A. Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem. 2000;68:415–419.

Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96:580–585.

Yamac M, Yildiz D, Sarikurkcu C, Celikkollu M, Solak MH. Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem. 2007;103(2):263–267.

Zhang D, Gao T, Ma P, Luo Y, Su P. Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi Nationality Autonomous Prefecture, China. Wuhan University Journal of Natural Sciences. 2008;13(3):267–272.

Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi. 10th ed. Wallingford: CAB International; 2008

Campos J, Tajera NA, Sanches CJ. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals. 2006;22:835–841.

Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006;98:277–284.

Garcia M, Alonso J, Melgar MJ. Agaricus macrosporum as potential bioremediation agents for substrates contaminated with heavy metals. Journal of Chemical Technology and Biotechnology. 2005;80:325–330.

Nikkarinen M, Mertanen E. Impact of geological origin on traces element composition of edible mushrooms. J Food Compost Anal. 2004;17:301–310.

Nonnis Marzano F, Bracchi PG, Pizzetti P. Radioactive and conventional pollutants accumulated by edible mushrooms (Boletus sp.) are useful indicators of species origin. Environ Res. 2001;85:260–264.

Alaimo MG, Saitta A, Ambrosio E. Bedrock and soil geochemistry influence the content of chemical elements in wild edible mushrooms (Morchella group) from South Italy (Sicily). Acta Mycol. 2019;54(1):1122.

Pettenella D, Kloehn S. Mediterranean mushrooms: how to market them. In: Berrahmouni N, Escuté X, Regato P, Stein C, editors. Beyond cork – a wealth of resource for people and nature. Madrit: WWF Mediterranean; 2007. p. 52–65.

Sardeshpande M, Shackleton C. Wild edible fruits: a systematic review of an under-researched multifunctional NTFP (non-timber forest product). Forests. 2019;10:467.

Ambrosio E. Analysis and characterization of Boletus edulis group: an ecological and economic resource [PhD thesis]. Genoa: University of Genoa; 2015.

Sitta N, Davoli P. Edible ectomycorrhizal mushrooms: international markets and regulations. In: Zambonelli A, Bonito G, editors. Edible ectomycorrhizal mushrooms. Current knowledge and future prospective. Berlin: Springer; 2012. p. 355–380. (Soil Biology; vol 34).

Boa E. Wild edible fungi: a global overview of their use and importance to people. Rome: Food and Agricultural Organization of the United Nations (FAO); 2004.

Cai M, Pettenella D, Vidale E. Income generation from wild mushrooms in marginal rural areas. For Policy Econ. 2011;13:221–226.

Ortega-Martinez P, Martinez-Pena F. A sampling method for estimating sporocarp production of wild edible mushroom of social and economic interest. Investigacion Agraria: Sistemas y Recursos Forestales. 2008;17(3):228–237.

de La Verga H, Agueda B, Agreda T, Martinez-Pena F, Parlade J, Pera J. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza. 2013;23:391–402.

Agreda T, Cisneros O, Agueda B, Fernandez-Toiran LM. Age class influence on the yield of edible fungi in a managed Mediterranean forest. Mycorrhiza. 2014;24:143–152.

Ambrosio E, Zotti M. Mycobiota of three Boletus edulis (and allied species) productive sites. Sydowia. 2015;67:197–216.

Dentinger BTM, Ammirati JF, Both EE, Desjardin DE, Halling RE, Henkel TW, et al. Molecular phylogenetic of Porcini mushroom (Boletus section Boletus). Mol Phylogenet Evol. 2010;57(3):1276–1292.

Opara L. Traceability in agriculture and food supply chain: a review ofbasic concepts, technological implications, and future prospects. J Food Agric Environ. 2003;1(1):101–106.

Schwägele F. Traceability from a European perspective. Meat Sci. 2005;71:164–173.

Ambrosio E, Marescotti P, Mariotti MG, Cecchi G, Brancucci M, Zotti M. Food traceability: a novel approach for wild edible mushrooms. In: II International Plant Science Conference (IPSC) – 110° Congresso della Società Botanica Italiana (SBI); 2015 Sep 15–18; Pavia, Italy. [publication place unknown]: [publisher unknown]. p. xxvi.

Gazzetta ufficiale dell’Unione europea UE. Reg.931/2011 [Internet]. 2011 [cited 2019 Dec 23]. Available from:


Gazzetta ufficiale dell’Unione europea UE. UE Reg. 209/2013 [Internet]. 2013 [cited 2019 Dec 23]. Available from:

Gazzetta ufficiale delle Comunità europee. UE Reg. 178/2002 [Internet]. 2012 [cited 2019 Dec 23]. Available from:


Leonardi M, Paolocci F, Rubini A, Simonini G, Pacioni G. Assessment of inter- and intra-specific variability in the main species of Boletus edulis complex by ITS analysis. FEMS Microbiol Lett. 2005;243:411–416.

Mello A, Ghignone S, Vizzini A, Secchi C, Ruiu P, Bonfante P. ITS primers for the identification of marketable boletes. J Biotechnol. 2006;121(3):318–329.

Pafundo S, Agrimonti C, Maestri E, Marmiroli N. Applicability of SCAR markers for food genomics: olive oil traceability. J Agric Food Chem. 2007;55(15):6052–6059.

Rizzello R, Zampieri E, Vizzini A, Autino A, Cresti M, Bonfante P, et al. Authentication of prized white and black truffle in processed products using quantitative real-time PCR. Food Res Int. 2012;48(2):792–797.

Vita F, Lucarotti V, Alpi E, Balestrini R, Mello A, Bachi A, et al. Proteins from Tuber magnatum Pico fruiting bodies naturally growth in different areas of Italy. Proteome Sci. 2013;11:7.

Anderson KA, Magnuso BA, Tschirgi ML, Smith B. Determining the geographic origin of potatoes with traces element analysis using statistical and neural network classifiers. J Agr Food Chem. 1999;47(4):1568–1574.

Sharma A, Weindorf DC, Man T, Aldabaa A, Chakraborty S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma. 2014;232–234:141–147.

Casale M, Bagnasco L, Zotti M, Di Piazza S, Sitta N, Olivieri P. A NIR spectroscopy-based approach to detect fraudulent additions within mixture of dried porcini mushrooms. Talanta. 2016;160(1):729–734.

Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, et al. Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry. 2008;22(20):3147–3153.

Li Y, Zhang J, Li T, Liu H, Li H, Wang Y. Geographical traceability of wild Boletus edulis based data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM). Spectrochim Acta A. 2017;177:20–27.

Rivas-Martinez S. Bioclimatic and biogeographic maps of Europe [Internet]. 2008 [cited 2019 May 3]. Available from: [Internet] 2019 [cited 2019 May 3]. Available from:

Courtecuisse R, Duhem B. Guide des Champignons de France et d’Europe. Lausanne: Delachaux et Niestlé; 1994.

Boccardo F, Traverso M, Vizzini A, Zotti M. Funghi d’Italia. Bologna: Zanichelli; 2008.

Muñoz AJ. Boletus s. l. Alassio: Edizione Candusso; 2005. (Fungi Europei; vol 2).

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007;111:509–547.

MycoBank [Internet]. 2019 [cited 2019 May 3]. Available from:

CBS-KNAW Collections [Internet]. 2019 [cited 2019 May 3]. Available from:

Feest A. Establishing baseline indices for the quality of the biodiversity of restored habitats using a standardized sampling process. Restor Ecol. 2006;14(1):112–122.

Brancucci G, Brancucci M, Marescotti P, Solimano M, Vagge I, Vegnuti R. The geodiversity of the Ligurian DOC vineyards and its relationships with the terroir. International Journal of Environmental Science and Development. 2017;8(9):686–690.

Bosco GL. Development and application of portable. hand-held X-ray fluorescence spectrometers. TrAC Trends in Analytical Chemistry. 2013;45:121–134.

Weindorf DC, Zhu T, McDaniel P, Mitchell V, Lynn L, Michaelson G, et al. Characterizing soils via portable X-ray fluorescence spectrometer: 2 Spodic and Albic horizons. Geoderma. 2012;189–190:268–277.

Weindorf DC, Paulette L, Man T. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environ Pollut. 2013;182:92–100.

Weindorf DC, Bakr N, Zhu Y, Mcwhirt A, Ping CL, Michaelson G, et al. Influence of ice on soil elemental characterization via portable X-ray fluorescence Spectrometry. Pedosphere. 2014;24(1):1–12

Folk RL, Andrews PB, Lewis DW. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics. 1970;13(4):937–968.

Legendre P, Legendre L. Numerical ecology. 3rd ed. Amsterdam: Elsevier Science; 2012.

Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67(3):345–366.[0345:SAAIST]2.0.CO;2

R Core Team. R: a language and environment for statistical computing. Version 3.5.1 [Software]. Vienna: R Foundation for Statistical Computing; 2018.

Marescotti P, Solimano M, Beccaris G, Scotti E, Crispini L, Poggi E, et al. La presenza naturale di metalli nei suoli: criticità operative e possibili soluzioni. ECO. 2014;29:60–63.

Venturelli G, Contini S, Bonazzi A. Weathering of ultramafic rocks and element mobility at Mt Prinzera Northern Apennines Italy. Mineral Mag. 1997;61(6):765–778.

Oze C, Fendorf S, Bird DK, Coleman RG. Chromium geochemistry of serpentine soils. Int Geol Rev. 2004;46(2):97–126.

Decreto legislativo 3 aprile 2006, n. 152. Norme in materia ambientale [Internet]. 2013 [cited 2019 May 3]. Available from:


Giannaccini G, Betti L, Palego L, Mascia G, Schmid L, Lanza M, et al. The trace element content of top-soil and wild edible mushrooms samples collected in Tuscany Italy. Environ Monit Assess. 2015;184(2):7579–7595.

Alaimo MG, Dongarrà G, La Rosa A, Tamburo E, Vasquez G, Varrica D. Major and traces elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy). Ecotoxicol Environ Saf. 2018;157(15):182–190.