Chemical compounds of extracts from Sarcodon imbricatus at optimized growth conditions

Katarzyna Sułkowska-Ziaja, Agnieszka Szewczyk, Joanna Gdula-Argasińska, Halina Ekiert, Jerzy Jaśkiewicz, Bożena Muszyńska

Abstract


The effect of carbon and nitrogen sources and initial pH and temperature of the medium on the mycelial growth of Sarcodon imbricatus (L.) P. Karst. in axenic liquid culture was investigated. The optimal composition of the medium was found to be: 5% fructose, 1% hydrolysate of casein, 1% yeast extract, and 0.3% KH2PO4 at pH = 6 and incubation temperature of 20°C. In this condition the maximum biomass growth was observed, yielding 10.2 g L−1 of dry weight after 3-week of growth. The medium regarded as optimal for growth of S. imbricatus mycelium was used for the production of the biomass and further chemical analysis. The quantitative and qualitative composition of phenolic acids, fatty acids, and sterols were determined using chromatographic methods. The total content of phenolic acids was 1.86 mg × 100 g−1 DW, with the largest amount of protocatechuic acid (1.27 mg × 100 g−1 DW). Nineteen fatty acids were estimated, including five unsaturated fatty acids, e.g., oleic and α-linolenic acid. The analysis of sterols composition revealed the presence of ergosterol and ergosterol peroxide (197.7 and 200.47 mg × 100 g−1 DW, respectively). These compounds were isolated and confirmed by 1H-NMR. Presented study constitutes the first report on the accumulation of substances (phenolic acids, fatty acids, and sterols) with multidirectional biological activity in the mycelial axenic culture of Sarcodon imbricatus.

Keywords


Sarcodon imbricatus; in vitro cultures; secondary metabolites

Full Text:

PDF

References


Yuan B, Chi X, Zhang R. Optimization of exopolysaccharides production from a novel strain of Ganoderma lucidum CAU5501 in submerged culture. Brazilian Journal of Microbiology. 2012;43(2):490–497. http://dx.doi.org/10.1590/S1517-83822012000200009

Zárate-Chaves CA, Romero-Rodríguez MC, Niño-Arias FC, Robles-Camargo J, Linares-Linares M, Rodríguez-Bocanegra MX, et al. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology. 2013;44(1):215–223. http://dx.doi.org/10.1590/S1517-83822013005000032

Maruyama H, Yamazaki K, Murofushi S, Konda C, Ikekawa T. Antitumor activity of Sarcodon aspratus (Berk.) S. Ito and Ganoderma lucidum (Fr.) Karst. J Pharmacobiodyn. 1989;12(2):118–123.

Hirota M, Morimura K, Shibata H. Anti-inflammatory compounds from the bitter mushroom, Sarcodon scabrosus. Biosci Biotechnol Biochem. 2002;66(1):179–184. http://dx.doi.org/10.1271/bbb.66.179

Kamo T, Imura Y, Hagio T, Makabe H, Shibata H, Hirota M. Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem. 2004;68(6):1362–1365. http://dx.doi.org/10.1271/bbb.68.1362

Kobori M, Yoshida M, Ohnishi-Kameyama M, Takei T, Shinmoto H. 5alpha,8alpha-Epidioxy-22E-ergosta-6,9(11),22-trien-3beta-ol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells. Biol Pharm Bull. 2006;29(4):755–759. http://doi.org/10.1248/bpb.29.755

Kobori M, Yoshida M, Ohnishi-Kameyama M, Shinmoto H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol. 2007;150(2):209–219. http://dx.doi.org/10.1038/sj.bjp.0706972

Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol. 2015;35(3):355–368. http://dx.doi.org/10.3109/07388551.2014.887649

Sułkowska-Ziaja K, Karczewska E, Wojtas I, Budak A, Muszyńska B, Ekiert H. Isolation and biological activities of polysaccharide fractions from mycelium of Sarcodon imbricatus L. P. Karst. (Basidiomycota) cultured in vitro. Acta Pol Pharm. 2011;68(1):143–145.

Sułkowska-Ziaja K, Muszyńska B, Ekiert H. Chemical composition and cytotoxic activity of the polysaccharide fractions in Sarcodon imbricatus (Basidiomycota). Acta Mycol. 2013;47(1):49–56. http://dx.doi.org/10.5586/am.2012.006

Agerer R. Ectomycorrhizae of Sarcodon imbricatus on Norway spruce and their chlamydospores. Mycorrhiza. 1991;1(1):21–30. http://dx.doi.org/10.1007/BF00205898

Orłoś H. Atlas grzybów leśnych. Warszawa: PWRiL; 1967.

Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med. 2005;2(3):285–299. http://dx.doi.org/10.1093/ecam/neh107

Hrouda P. Bankeraceae in Central Europe. 1. Czech Mycol. 2005;57:57–78.

Hrouda P. Bankeraceae in Central Europe. 2. Czech. Mycol. 2005;57:3–4.

Turło J, Lubiński O, Gutkowska B. Isolation of lentinan, an immunomodulating (1→3)-β-d-glucan from submerged cultivated mycelium of Lentinus edodes and culture medium. Acta Pol Pharm. 2004;61(suppl):40–42.

Ellnain-Wojtaszek M, Zgórka G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chromatogr Relat Technol. 1999;22(10):1457–1471. http://dx.doi.org/10.1081/JLC-100101744

Yuan JP, Kuang HC, Wang JH, Liu X. Evaluation of ergosterol and its esters in the pileus, gill, and stipe tissues of agaric fungi and their relative changes in the comminuted fungal tissues. Appl Microbiol Biotechnol. 2008;80(3):459–465. http://dx.doi.org/10.1007/s00253-008-1589-9

Joo JH, Lim JM, Kim HO, Kim SW, Hwang HJ, Choi JW, et al. Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk) S. lto TG-3. World J Microbiol Biotechnol. 2004;20(7):767–773. http://dx.doi.org/10.1007/s11274-004-5841-x

Xiao JH, Chen DX, Liu JW, Liu ZL, Wan WH, Fang N, et al. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J Appl Microbiol. 2004;96(5):1105–1116. http://dx.doi.org/10.1111/j.1365-2672.2004.02235.x

Newcomb HR, Jennison MW. Physiology of wood-rotting basidiomycetes. IV. Respiration of non-proliferating cells of Polyporus palustris. Can J Microbiol. 1962;8:145–156.

Kues U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54(2):141–152. http://dx.doi.org/10.1007/s002530000396

Sokół S, Golak-Siwulska I, Sobieralski K, Siwulski M, Górka K. Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum. Acta Mycol. 2015;50(2):1069. http://dx.doi.org/10.5586/am.1069

Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol. 2001;33(1):76–81.

Jennison MW, Newcomb MD, Henderson R. Physiology of the wood-rotting Basidiomycetes. I. Growth and nutrition in submerged culture in synthetic media. Mycologia. 1955;47(3):275–304. http://dx.doi.org/10.2307/3755451

Cho EJ, Oh JY, Chang HY, Yun JW. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol. 2006;127(1):129–140. http://dx.doi.org/10.1016/j.jbiotec.2006.06.013

Muszyńska B, Sułkowska-Ziaja K, Ekiert H. Indole compounds in fruiting bodies of some selected Macromycetes species and in their mycelia cultured in vitro. Pharmazie. 2009;64(7):479–480.

Kalyoncu F, Oskay M, Kayalar H. Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology. 2010;1(3):195–199. http://dx.doi.org/10.1080/21501203.2010.511292

Ferreira ICFR, Barros L, Abreu RMV. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543–1560. http://dx.doi.org/10.2174/092986709787909587

Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R. Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem. 2006;54(26):9764–9772. http://dx.doi.org/10.1021/jf0615707

Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem. 2008;56(16):7265–7270. http://dx.doi.org/10.1021/jf8008553

Barros L, Duenas M, Ferreira ICFR, Baptista P, Santos-Buelga C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol. 2009;47(6):1076–1079. http://dx.doi.org/10.1016/j.fct.2009.01.039

Pan A, Chen M, Chowdhury R, Sun Q, Campos H, Mozaffarian D, et al. α-Linolenic acid and risk of cardiovascular disease: a systematic. Am J Clin Nutr. 2012;96(6):1262–1273. http://dx.doi.org/10.3945/ajcn.112.044040

Brondz I, Høiland K, Ekeberg D. Multivariate analysis of fatty acids in spores of higher basidiomycetes: a new method for chemotaxonomical classification of fungi. Journal of Chromatography B. 2004;800(1–2):303–307. http://dx.doi.org/10.1016/j.jchromb.2003.07.003

Guillamón E, García-Lafuente A, Lozano M, D’arrigo M, Rostagno MA, Villares A, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715–723. http://dx.doi.org/10.1016/j.fitote.2010.06.005

Hanus LO, Shkrob I, Dembitski VM. Lipids and fatty acids of wild edible mushrooms of the genus Boletus. J Food Lipids. 2008;15(8):370–383. http://dx.doi.org/10.1111/j.1745-4522.2008.00125.x

Manzi P, Aguzzi A, Pizzoferrato L. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 2001;73(3):321–325. http://dx.doi.org/10.1016/S0308-8146(00)00304-6

Stadler M, Mayer A, Anke H, Sterner O. Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes. Planta Med. 1994;60(2):128–132. http://dx.doi.org/10.1055/s-2006-959433

Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007;105(1):140–145. http://dx.doi.org/10.1016/j.foodchem.2007.03.052

Trigos A, Ortega-Regules A. Selective destruction of microscopic fungi through photo-oxidation of ergosterol. Mycologia. 2002;94(4):563–568.

Takei T, Yoshida M, Ohnishi-Kameyama M, Kobori M. Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem. 2005;69(1):212–215. http://dx.doi.org/10.1271/bbb.69.212

Brennan PJ, Griffin PFS, Lösel DM, Tyrrell D. The lipids of fungi. Prog Chem Fats Other Lipids. 1975;14:49–89. http://dx.doi.org/10.1016/0079-6832(75)90002-6

Jasinghe VJ, Perera CO. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem. 2005;92(3):541–546. http://dx.doi.org/10.1016/j.foodchem.2004.08.022

Subbiah MTR, Abplanalp W. Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. Int J Vitam Nutr Res. 2003;73:19–23. http://dx.doi.org/10.1024/0300-9831.73.1.19

Zaidman B-Z, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol. 2005;67(4):453–468. http://dx.doi.org/10.1007/s00253-004-1787-z

Weete JD, Abril M, Blackwell M. Phylogenetic distribution of fungal sterols. PLoS One. 2010;5(5):10899. http://dx.doi.org/10.1371/journal.pone.0010899




DOI: https://doi.org/10.5586/am.1086

Journal ISSN:
  • 2353-074X (online)
  • 0001-625X (print; ceased since 2015)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society