Porównanie wzrostu oraz niektórych morfologicznych i anatomicznych cech Rhizoctonia cerealis i R. solani

ZBIGNIEW WEBER, TOMASZ ZDZIEBKOWSKI

Katedra Fitopatologii Akademii Rolniczej w Poznaniu

In laboratory experiments were observed diameter of hyphae as well as the influence of temperature and kind of medium on mycelium growth, colour of colony and forming of sclerotia by R. cerealis and R. solani.

WSTĘP

Celem niniejszej pracy było porównanie R. cerealis i R. solani pod względem liczby jąder w komórkach rosnących strzępek, wzrostu grzybni, średnicy strzępek rosnącej części grzybni powietrznej, koloru kolonii i wytwarzania sklerot na dwóch pożywkach.

MATERIAŁ I METODY

Precedentem pracy było sześć izolatów grzybów z rodzaju Rhizoctonia. Izolaty 1a i 1b, pochodzące z ostrych plam oczkowych pędów pszenżyta Gołębiak, Marcinowski 1988), okazały się gatunkiem R. cerealis, a
izolaty R-13 i R-2 wyizolowane z szyjki korzeniowej rzepaku ozimego (Weber 1987) oraz Z-1 i Z-2 uzyskane ze sklerot występujących na bulwach ziemniaka — gatunkiem R. solani.

Przed przystąpieniem do określenia liczby jąder w komórkach strzępek, z rosnącej części kolonii pobierano grzybnię powietrzną, którą utrzymywano: przez 2 minuty w wodzie destylowanej, przez 2-3 minuty w 30% wodnym roztworze formaldehydu, przez 5-10 minut w 50% wodnym roztworze safrany i 0 (Martin 1987; Yamamoto, Uchida 1982). Wybarwione strzępki umieszczano w kropli gliceryny. W ten sposób przygotowane preparaty obserwowano w mikroskopie śweitlnym Jenamed 2 (obiektyw Planachromat H. I. 100 × 1,30) przy powiększeniu 1000 ×.

Przy ocenie wpływu temperatury (10, 15, 20, 25 i 30°C) na wzrost grzybni izolatów określano wzrost liniowy podczas 3 i 4 doby na pożywkach: agarowo-glukozowo-ziemniaczanej (ACZ) i Czapka oraz przyrost suchej masy grzybni w czasie 23 dni na tych samych pożywkach pozbawionych agaru. W pierwszym przypadku w każdej kombinacji stosowano po 3 płytki Petrie-go o średnicy 90 mm z 18 ml pożywki, a w drugim po 3 kolbki stożkowe o pojemności 100 ml z 20 ml pożywki. Inokulum stanowiły krążki o średnicy 5 mm pożywki (odpowiednio AGZ lub Czapka) przeróżnięte przez 7-10-dniowe kolonie grzybów. Wzrost liniowy określano wzdłuż dwóch prostopadłych linii każdej płytki Petriego. Przyrost suchej masy oceniano po zebraniu grzybni z każdej kolbki na oddzielny krążek bibuły o określonej masie. Suszenie grzybni wraz z bibułą wykonywano przy temp. 80°C do momentu uzyskania stałej masy.

Grubość strzępek grzybni powietrznej określano u kolonii ocenianych izolatów grzybów rosnących przy temp. 25°C na agarze AGZ i na pożywce Czapka. W każdej kombinacji wykonywano po 20-30 pomiarów średnicy wierzchołkowych komórek strzępek grzybni w połowie ich długości.

Opis koloru i występowania sklerot wykonano jednorazowo na 9-dniowych koloniach wszystkich izolatów grzybów z rodzaju Rhizoctonia.

W celu określenia istotności różnic szybkości wzrostu liniowego i przyrostu suchej masy grzybni oraz średnicy strzępek wykonano analizę wariancji. Przed wykonaniem obliczeń odpowiednie wartości przekształcono wg Freema-Tukeya lub Blissa. Przy porównywaniu średnich wartości posługiwano się metodą Tukeya.

WYNIKI

Izolaty Rhizoctonia sp. pochodzące z pszenicy zawierały po 2, a pocho- dzące z rzepaku i ziemniaka — więcej niż 2 jądra w komórkach strzępek grzybni.

Szybkość wzrostu liniowego grzybni grzybów z rodzaju Rhizoctonia zale-
żła od temperatury i rodzaju pożywki (tab. 1, 2). Na pożywce AGZ maksymalny wzrost grzybni *R. cerealis* (5,8-5,9 mm/dobę) zanotowano przy temp. 20°C, chociaż wartości uzyskane przy temp. 25°C okazały się mniejsze w stopniu nieistotnym statystycznie (tab. 1). Maksymalny wzrost grzybni

Tabela 1 – Table 1

Wpływ temperatury na liniowy wzrost grzybów na pożywkach AGZ (A) i Czapka (B)

Influence of the temperature on the linear growth of fungi on potato-dextrose-agar (A) and Czapek medium (B)

(Poznań, 7-11.12.1987)

<table>
<thead>
<tr>
<th>Gatunek Species</th>
<th>Izolat Isolate</th>
<th>Średni przyrost* grzybni w czasie 3 i 4 doby Mean growth rate* of the mycelium during 3rd and 4th day (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>1,5bc</td>
<td>2,7de</td>
</tr>
<tr>
<td>1b</td>
<td>1,9cd</td>
<td>3,3e</td>
</tr>
<tr>
<td>R. solani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R–13</td>
<td>0,2a</td>
<td>3,7ef</td>
</tr>
<tr>
<td>R–2</td>
<td>0,4a</td>
<td>6,0hi</td>
</tr>
<tr>
<td>Z–1</td>
<td>1,1b</td>
<td>7,2jk</td>
</tr>
<tr>
<td>Z–2</td>
<td>1,7bc</td>
<td>6,1ij</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>1,0a</td>
<td>3,2e</td>
</tr>
<tr>
<td>1b</td>
<td>1,3ab</td>
<td>5,0g</td>
</tr>
<tr>
<td>R. solani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R–13</td>
<td>2,7cd</td>
<td>10,7jk</td>
</tr>
<tr>
<td>R–2</td>
<td>3,0cd</td>
<td>8,5hi</td>
</tr>
<tr>
<td>Z–1</td>
<td>2,7cd</td>
<td>4,7fs</td>
</tr>
<tr>
<td>Z–2</td>
<td>2,3cd</td>
<td>7,4hi</td>
</tr>
</tbody>
</table>

* – jednakowymi literami oznaczono wartości nie różniące się istotnie (means followed by the same letter are not significantly different at 5% level)

izolatów *R. solani* pochodzących z rzepaku (R-13, R-2) wynosił odpowiednio 8,5 (25°C) i 10,2 mm/dobę (20°C), a pochodzących ze sklerot znajdujących się na bulwach ziemniaka (Z–1, Z–2) – 12,6 (20°C) i 13,3 mm/dobę (25°C). Przy temp. 30°C szybkość wzrostu zbliżoną do maksymalnej stwierdzono jedynie u izolatów *R. solani* pochodzących z ziemniaka. Na pożywce Czapka maksymalny wzrost grzybni *R. cerealis* (3,2-5,0 mm/dobę) zanotowano przy temp. 15-20°C (tab. 1). Maksymalny wzrost grzybni izolatów *R. solani* pochodzących z rzepaku wynosił 10,7 (15°C) – 10,9 mm/dobę (20°C), a pochodzących z ziemniaka 12,7-13,9 mm/dobę (25°C).

Przyrost suchej masy grzybni na pożywce AGZ okazał się najwyższy przy temp. 10°C w przypadku *R. cerealis* (143-154 mg) oraz przy temp. 15-20°C w przypadku *R. solani* (176-209 mg), (tab. 2). Przyrost ten zależał od
Tabela 2 — Table 2

Wpływ temperatury na przyrost suchej masy grzybni na płynnych pożywkach AGZ (A) i Czapka (B)

Influence of the temperature on the increase of the mycelium mass of on liquid on liquid potato-dextrose medium (A) and on liquid Czapek medium (B)

(Poznań, 7–30.01.1988)

<table>
<thead>
<tr>
<th>Gatunek Species</th>
<th>Izolat Isolate</th>
<th>Sucha masa grzybni w mg*</th>
<th>Dry mass of mycelium in mg*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10°C</td>
<td>15°C</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>143ij</td>
<td>88abc</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>154ijk</td>
<td>119fg</td>
</tr>
<tr>
<td>R. solani</td>
<td>R-13</td>
<td>170kln,mp</td>
<td>206e</td>
</tr>
<tr>
<td></td>
<td>R-2</td>
<td>186mnop</td>
<td>209e</td>
</tr>
<tr>
<td></td>
<td>Z-1</td>
<td>147ij</td>
<td>169kl,lm</td>
</tr>
<tr>
<td></td>
<td>Z-2</td>
<td>157ik</td>
<td>187nop</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>72a</td>
<td>127c,de</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>88ab</td>
<td>149ef</td>
</tr>
<tr>
<td>R. solani</td>
<td>R-13</td>
<td>123e</td>
<td>167f</td>
</tr>
<tr>
<td></td>
<td>R-2</td>
<td>128c,d</td>
<td>187hi</td>
</tr>
<tr>
<td></td>
<td>Z-1</td>
<td>98b</td>
<td>337i</td>
</tr>
<tr>
<td></td>
<td>Z-2</td>
<td>131c,de</td>
<td>369lm</td>
</tr>
</tbody>
</table>

*— jednakowymi literami oznaczono wartości nie różniące się istotnie (means followed by the same letter are not significantly different at 5% level)

gatunku i izolatu grzyba oraz od temperatury. Na pożywce Czapka największy przyrost suchej masy grzybni zanotowano przy temp. 25°C (205-215 mg) w przypadku *R. cerealis* oraz przy temp. 20°C w przypadku izolatów *R. solani* pochodzących z rzepaku (177-254 mg) i przy temp. 15°C, gdy izolaty *R. solani* pochodziły z ziemniaka (337-369 mg), (tab. 2).

Tabela 3 – Table 3
Kolor 9-dniowych kolonii grzybów i występowanie na nich sklerot, na pożywkach AGZ (A) i Czapka (B)
Colour of the 9-days colonies of Rhizoctonia species fungi and forming of the sclerotia by them on AGZ medium (A) and on Czapek medium (B)
(Poznań, 7–16.12.1987)

<table>
<thead>
<tr>
<th>Gatunek Species</th>
<th>Izolat Isolate</th>
<th>Kolor kolonii* i obecność sklerot** Colonies colour* and presence of sclerotia**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10°C</td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>b.–</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>b.–</td>
</tr>
<tr>
<td>R. solani</td>
<td>R–13</td>
<td>b.–</td>
</tr>
<tr>
<td>R–2</td>
<td></td>
<td>b.–</td>
</tr>
<tr>
<td>Z–1</td>
<td></td>
<td>b.+</td>
</tr>
<tr>
<td>Z–2</td>
<td></td>
<td>b.+</td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>b.–</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>b.–</td>
</tr>
<tr>
<td>R. solani</td>
<td>R–13</td>
<td>b.–</td>
</tr>
<tr>
<td>R–2</td>
<td></td>
<td>b.–</td>
</tr>
<tr>
<td>Z–1</td>
<td></td>
<td>b.+</td>
</tr>
<tr>
<td>Z–2</td>
<td></td>
<td>b.+</td>
</tr>
</tbody>
</table>

* – kolor (colour): b. – biały (white), br. – brunatny (brown), j.br. – jasnobrunatny (light brown), c.br. – ciemnobrunatny (dark brown)
** – skleroty (sclerotia): – brak (no), + nieliczne (not numerous), ++ liczne (numerous)

Na pożywie AGZ średnica strzępek grzybni powietrznej R. cerealis wynosiła średnio 3,3 - 4,2 μm, a R. solani 5,5 - 7,9 μm (tab. 4). Na pożywie Czapka średnica strzępek grzybni powietrznej R. cerealis wynosiła średnio 2,5 - 3,3 μm, a R. solani 4,8 - 9,9 μm (tab. 4).

DYSKUSJA

Tabela 4 — Table 4
Średnica strzępek powietrznej grzybni rosnącej części kolonii grzybów na pożywkach AGZ (A) i Czapka (B)
Diameter of air mycelium hyphal of the colony growing part of fungi on AGZ (A) and on Czapka
medium (B)
(Poznań 7–10.12.1987)

<table>
<thead>
<tr>
<th>Gatunek Species</th>
<th>Izolat Isolate</th>
<th>Średnica strzępek w μm Hyphal diameter in μm</th>
<th>zakres — range</th>
<th>średnio* — mean*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>(1,2)2,3-4,6(6,9)</td>
<td>4,2<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>2,3-4,6</td>
<td>3,3<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R. solani</td>
<td>R–13</td>
<td>(4,6)6,9-8,1</td>
<td>7,1<sup>cd</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R–2</td>
<td>(2,3)3,4-7,7</td>
<td>5,5<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z–1</td>
<td>6,9-9,2</td>
<td>7,9<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z–2</td>
<td>5,8-6,9(8,1)</td>
<td>6,7<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. cerealis</td>
<td>1a</td>
<td>2,3-4,6</td>
<td>3,3<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>(1,2)2,3-3,4</td>
<td>2,5<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R. solani</td>
<td>R–13</td>
<td>(3,4)4,6-5,8</td>
<td>4,8<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R–2</td>
<td>(3,4)4,6-6,9</td>
<td>5,3<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z–1</td>
<td>6,9-11,5</td>
<td>9,9<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z–2</td>
<td>4,6-11,5</td>
<td>7,7<sup>e</sup></td>
<td></td>
</tr>
</tbody>
</table>

* — jednakowymi literami oznaczono wartości nie różniące się istotnie
(means followed by the same letter are not significantly different at 5% level)

Dobowy wzrost liniowy grzybni na pożywce AGZ wynosi u R. cerealis (przy 23°C) 4,8 - 7 mm (u izolatu 1a wzrost ten przy 25°C był już niższy od 4,8 i wynosił 4,4 mm), a u R. solani na tej pożywce przy tej samej temperaturze jest on większy; dobowy wzrost liniowy grzybni R. solani przy 25°C wahał się od 5,5 (R-2) do 13,3 mm (Z-2).

Trzecim ważnym elementem określanym przy oznaczaniu grzybów z rodzaju Rhizoctonia jest średnica młodych strzępek grzybni. Na agarze

Podsumowując należy stwierdzić, że wśród wielu cech pozwalających odróżnić *R. cerealis* od *R. solani* bardzo ważnymi są: liczba jąder w komórkach strzępek grzybni, średnica młodych strzępek grzybni powietrznej i szybkość wzrostu liniowego grzybni na agarze glukozowo-ziemniaczanym przy temp. 23°C.

LITERATURA

3 — Acta Mycologica 25.2

SUMMARY

One of the simplest methods of staining nuclei of *Rhizoctonia cerealis* and *R. solani* proved to be that with 3% formaldehyde and 50% of safranin O. The nuclei were seen very well in the light microscope Jenamed 2 with objective Planachromat H. I. 100×1. 30. The rate of linear growth, diameter of young air hyphae, colour of colony and formation of sclerotia in the case of two binucleate isolates from triticale were typical for *R. cerealis* and in the case of multinucleate isolates from rape and potato it appeared that they are characteristic for *R. solani.*