Możliwości rozkładu fenolu
przez grzyby z rodziny Mucoraceae

ANDRZEJ NESPIAK, JOLANTA KRZYŻANOWSKA, MARIA SIENNICKA*

Zakład Biologii i Botaniki Farmaceutycznej Akademii Medycznej we Wrocławiu, Wojewódzka Stacja Sanitarno-Epidemiologiczna we Wrocławiu

The investigations included assays of phenol biodegradation possibilities of some strains of Mucoraceae. The phenol concentrations in media were 0.01, 0.001, 0.0001%/o. In this way we selected Cercinella muscae and Mortierella isabellina strains which decomposed phenol with yield from 14.7 to 29.6%/o.

WSTĘP

Problem przekształceń przez drobnoustroje fenoli znajdujących się w glebie i wodach ściekowych jest od lat przedmiotem wielu prac badawczych. Posiada on przede wszystkim aspekt praktyczny - oceny szczezanie zbiorników wodnych, jak też teoretyczny, gdyż rozkład fenoli łączy się z wytwarzaniem produktów mogących mieć znaczenie gospodarcze (Zdybniewska 1968). Intensywność tego procesu zależy od stężenia fenoli w wodzie. Stwierdzono w licznych doświadczeniach, w których fenol był jedynym źródłem węgla, że bakterie rozkładają go najintensywniej w środowisku, w którym stężenie jego ważyło się w granicach 200-500 mg/l. Stężenie mniejsze stwarzało pozywkę zbyt ubogą, w wyższym zaś ujawniały się eksydycne właściwości fenolu. (Kalaś, Rogowska wg Zdybniewskiej l.c.) zwraca uwagę
na kombinowany efekt metabolizmu wielu gatunków drobnoustrojów powodujących rozkład fenolu w wodzie.

Bakterie decydujące o biodegradacji fenolu w wodzie są bardzo szeroko rozpowszechnione (Pawłaczyk-Szpilowa 1965; Lato- szczek 1960 i inni). Wynika to z charakteru utleniania fenolu zachodzącego najefektywniejszy przy pH wyższym od 7,0. Putilina (1959) określiła zespół „szczepów składający się z 10 gatunków bakterii”, promieniowców i grzybów jako najbardziej przydatny do rozkładu fenolu w wodach ściekowych. Zauważyła przy tym, że niektóre spośród szczepów bakterii zmieniły w ciągu 10-letniego pasażowania na podłożach z fenolem swoje właściwości biodegradacyjne.

Ze ścieków fenolowych przemysłu naftowego dokonano m.in. izolacji 720 kultur drobnoustrojów, z których aż 303 wykazało bujny wzrost na pożywce z węglowodanami i fenolem. Wśród nich 26% stanowiły kultu- ry drożdży. Jeśli chodzi o udział innych grzybów w procesie rozkładu fenoli literatura jest wyraźnie uboższa. Szczególne w tym względzie osiągnięcia mają badacze czescy, którzy przy biologicznym oczyszczaniu ścieków gazogeneratorowych stwierdzili, że grzyby z rodzaju Oospora zdolne były do rozkładania lotnych fenoli (Kustka 1961).

W ostatnim dwudziestoleciu wzrasta ilość prac traktujących o grzyb- bach biorących udział w biodegradacji fenolu w wodach ściekowych. Kluczycki i Kubaczka (1966) określili aktywność drożdżaków z rodzaju Candida i Torulopsis. Grzyby te po wstępnej adaptacji rosły w środowisku, w którym stężenie fenolu było ok. 50 mg/l. Stwierdzono, że wykorzystywały one jako źródło pokarmu głównie kwasy tłuszczowe z odfenolowanych ścieków kombinatu koksochemicznego, sam fenol był raczej przez nie tolerowany.

W wyniku hodowli ciągłych Torulopsis utilis przy próbach oczyszczan- nia nieodfenolowanych ścieków z procesów koksowania węgla brunatne- go stwierdzono wzrost i rozmnażanie się komórek grzyba w stężeniach fenolu dochodzących do 5000 mg/ml. Stwierdzono również w podobnych wypadkach, że zawsze lepszy rozkład fenolu wykorzystują grzyby droż- dziodzialne wyizolowane z tych ścieków, a nie szczepy adaptowane pochodzące z innych siedlisk. Najczęstsze ocenki zawierały się gatunki: Candida pulcherrina, C. brumpti, Torulopsis utilis i T. inconspicua. Spostród nich jednak tylko Candida pulcherrina wykazała bezpośrednią zdolność zużywania fenolu jako źródła węgla, pozostałe potrzebowalę do wzrostu dodatku glukozy do podłoża.

Doniesienia badaczy szwedzkich (Neuajar, Varga 1970) infor- mują o wykorzystaniu fenolu i jego pochodnych jako źródeł węgla przez Tichosporum cutaneum. Grupa grzybów drożdżoidalnych, do któ- rych należy ten gatunek, znana jest jako organizmy infekujące skórę

METODY

Szczepy pochodzące z kolekcji Zakładu Biologii i Botaniki Farmaceutycznej Akademii Medycznej we Wrocławiu hodowano na pożywkach mineralnych, w których źródłem węgla była glutokoza, glutokoza + fenol lub sam fenol w ilościach 0,0001; 0,001; 0,01%. Źródłem azotu był NaNO₃ albo NH₄Cl. Inokulum grzyb wprowadzono do probówek z 10 ml pożywki, hodowlę przeprowadzono w temperaturze 25°C. Z trzydziestu czterech szczepów aż dziewięć rośli na podłożu z fenolem jako jedynym źródłem węgla. Były to: Circinella angarensis (Schost) Zycha 164, Absidia gluca Hagem 254, Mucor hiemalis Wehmer 123, Absidia cylindrospora Hagem 336, Mortierella isabellina Oud. 212, Circinella muscae (Sorokine) Berl. et de Toni 302, Mortierella mutabilis Linn. 404, Mucor hiemalis 162 i 193. Szczepy te hodowano na pożywce syntetycznej z amonowym źródłem azotu i glutokozą jako źródłem węgla. Inoculum grzybów (po 0,1 cm³) wprowadzono do kolb ze 100 ml pożywki, a hodo-
włączenie w temperaturze 25°C. Po siedmiu dniach inkubacji do poszczególnych prób dodano fenolu w takiej ilości, aby uzyskać stężenia 0,01, 0,001 i 0,0001%. Część prób pozostawiono jako kontrolę bez fenolu. Po dalszych siedmiu dniach inkubacji, wszystkie próby przeszczepiono przez szczątki bibułowe i oznaczono taką masę grzybni, w przesączach zaś określono pozostałości pohodowlane fenolu. Oznaczenie związków fenolu przeprowadzono zgodnie z Polską Normą oznaczania fenoli lotnych w wodzie lub ściekach: metodą kolorymetryczną z 4-aminoantypiryina. Obliczenia suchej masy grzybni i zawartości fenolu w przesączach podhodowlanych wykonano w pięciu powtórzeńach (tab. 1).

Równolegle do hodowli na podłożu syntetycznym płynnym przebadano dla każdego ze szczepów wzrost na pożywce maltolowo-agarowej, do której dodano fenolu w stężeniach: 0,01, 0,001, 0,0001%. Inokulację podłoży dokonano metodą punktową. Średnie rosnących kolonii grzybni mierzono po trzech i sześciu dniach. Notowano ponadto dzień pojawu sporangiobarów i tworzenia w nich zarodników dla każdego z badanych gatunków (tab. 2).

WYNIKI OBSERWACJI

Właściwości biodegradacji fenolu przez różne grzyby były rozmaite. W przesączach pohodowlanych stwierdzono dużą rozbieżność w ubytach fenolu (tab. 1). Świadczy to, iż możliwości wykorzystania tego związku jako źródła węgla są cechą indywidualną gatunku (wnioskując nawet szczepu, jak wykazały wyniki badań trzech różnych szczepów *Mucor hiemalis*).

Największe ubytki fenolu w przesączu pohodowlanym stwierdzono u *Circinella muscae* 302, szczepu wyizolowanego z wody wodociągowej, a nieco mniejsze u szczepu *Absidia cylindrospora* 336 wyizolowanego z kompostu. Przeżywalność aż dziewięciu szczepów w środowisku o stężeniu fenolu rzędu 100 mg/l, z wyraźnymi możliwościami jego rozkładu, świadczy o aktywności tych grzybów w stosunku do fenolu, przypominającej aktywność niektórych drożdżaków (*Kluckycki, Kubačka* 1966; i in.). Interesującą ze względów praktycznych wydaje się być aktywność szczepu *Circinella muscae* pochodzącego z wody wodociągowej. Prawie 30-procentowy ubytek fenolu w przesączu pohodowlanym świadczy o jego możliwości biodegradacyjnej podobnej do stosowania w biologicznym oczyszczaniu ścieków szczepów z rodzaju *Oospora* (*Kubačka* 1961). *Mucor hiemalis*, gatunek najpowszechniejsza spośród pleśni, wykazał dużo słabsze zdolności biodegradacyjne, jednak często pojawiało togrzyba w naturalnych, jak również zmienionych gospodarkach.
Table 1

Dry weight of *Mucoraceae* mycelium and their ability to biodegradation according to fenol concentration in the medium

<table>
<thead>
<tr>
<th>Szczepy Strains of Mucoraceae</th>
<th>Cercinella angarenis (Schost.) Zycha</th>
<th>Absidia glauca Hagem</th>
<th>Absidia cylindrospora Hagem</th>
<th>Mortierella isabellina Oud.</th>
<th>Cercinella muscae (Sorok.) Berk. et de Toni</th>
<th>Mortierella mutabilis Linn.</th>
<th>Mucor hiemalis Wehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nr 123</td>
<td>Nr 162</td>
<td>Nr 193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>585.5</td>
<td>422.6</td>
<td>258.6</td>
<td>657.8</td>
<td>197.7</td>
<td>240.5</td>
<td>235.7</td>
</tr>
<tr>
<td></td>
<td>673.7</td>
<td>412.9</td>
<td>258.9</td>
<td>577.6</td>
<td>199.9</td>
<td>260.1</td>
<td>259.6</td>
</tr>
<tr>
<td></td>
<td>755.0</td>
<td>435.9</td>
<td>264.5</td>
<td>578.6</td>
<td>214.9</td>
<td>261.8</td>
<td>270.0</td>
</tr>
<tr>
<td></td>
<td>611.5</td>
<td>452.9</td>
<td>261.6</td>
<td>647.3</td>
<td>212.1</td>
<td>236.7</td>
<td>264.3</td>
</tr>
<tr>
<td>II</td>
<td>90</td>
<td>90</td>
<td>80.6</td>
<td>70.4</td>
<td>71.8</td>
<td>93</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>88</td>
<td>91.5</td>
<td>78.8</td>
<td>76.5</td>
<td>82</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>95</td>
<td>100.0</td>
<td>85.3</td>
<td>77.1</td>
<td>88</td>
<td>91</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>10</td>
<td>19.4</td>
<td>29.6</td>
<td>28.1</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12</td>
<td>8.5</td>
<td>21.2</td>
<td>23.5</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td>14.7</td>
<td>23.0</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Legend (Legend):
- I Sucha masa grzybni w mg (Dry weight of mycelium)
- II Pozostałość fenolu w przesączach pohodowlanych w % (Phenol residue in filtered cultures in %)
- III Ubytek fenolu w % (Phenol decrease in %)
- a – 0.01%; b – 0.001%; c – 0.0001%; d – 0.
Table 2

Wpływ fenolu na średnice kolonii i sporulację badanych szczepów
Effect of phenol influence on the diameter of colonies and sporulation of investigated strains

<table>
<thead>
<tr>
<th>Strains of Mucoraceae</th>
<th>C. angarensis</th>
<th>A. glauca</th>
<th>A. cylindrospora</th>
<th>M. isabellina</th>
<th>C. muscae</th>
<th>M. mutabilis</th>
<th>M. hiemalis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nr 123</td>
</tr>
<tr>
<td>Mean colony diameter</td>
<td>6.6</td>
<td>6.6</td>
<td>5.7</td>
<td>2.6</td>
<td>3.6</td>
<td>5.5</td>
<td>3.6</td>
</tr>
<tr>
<td>3 days</td>
<td>7.3</td>
<td>7.4</td>
<td>7.0</td>
<td>2.8</td>
<td>3.7</td>
<td>5.6</td>
<td>3.9</td>
</tr>
<tr>
<td>6 days</td>
<td>7.1</td>
<td>7.2</td>
<td>6.3</td>
<td>2.7</td>
<td>3.9</td>
<td>5.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Phenol concentration</td>
<td>6.9</td>
<td>7.4</td>
<td>6.3</td>
<td>2.6</td>
<td>4.0</td>
<td>5.6</td>
<td>4.5</td>
</tr>
<tr>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.4</td>
<td>9.0</td>
<td>6.1</td>
</tr>
<tr>
<td>6 days</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.6</td>
<td>7.5</td>
<td>9.0</td>
<td>7.2</td>
</tr>
<tr>
<td>9%</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.5</td>
<td>7.4</td>
<td>9.0</td>
<td>6.9</td>
</tr>
<tr>
<td>6 days</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.4</td>
<td>7.5</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Sporulation frequency</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3 days</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6 days</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Legenda (Legend): a - 0.01%; b - 0.001%; c - 0.0001%; d - 0%.
człowieka ekosystemach, jest zjawiskiem korzystnym w procesach naturalnego rozkładu związków fenolowych w przyrodzie.

 Wyniki doświadczeń nad wzrostem i tworzeniem zarodni u dziewięciu wytypowanych szczepów na podłożu agarowym wykazują, że u większości z nich najmniejsza nawet dawka fenolu opóźnia znacznie zarodnikowanie, przy jednoczesnym braku zahamowania wzrostu grzybni. Średnica kolonii tych szczepów, niezależnie od ilości fenolu w pożywce, była niemal identyczna ze średnicą kolonii z podłoża bez fenolu, natomiast pojaw sporangioforów, niezależnie od możliwości degradacyjnych szczepu, z reguły był opóźniony o cztery do pięciu dni (tab. 2).

WNIOSKI

1. Stwierdzono, że grzyby z rodziny Mucoraceae wykazują znaczną tolerancję na stężenie fenolu w podłożu.

2. Siedem szczepów wykazało możliwości biodegradacji fenolu w stopniu słabszym niż stosowane dotychczas do tych celów bakterie lub grzyby drożdżopodobne.

3. Aktywność szczepów Circinella muscae oraz Mortierella isabellina w stosunku do fenolu w podłożu okazała się najwyższą. Stwarza to możliwość wykorzystania tych grzybów w praktyce.

LITERATURA

Polska Norma PN-72, C-04602 — Ark. 02. Woda i ścieki. Badania zawartości fenolu.
Putilina N., 1959, Mikroby primenamyje na promyślnych oczistnych sooruże-
Ruban E. L., Karaseva G. N. 1969, Ispolzowanie fenola i jego proizvodnych
pri sinteze L-tryptofana drożżami Candida utilis 295 I., Prikl. bioch. mikrobiol.
Skirgiello A., Zadara M. 1979, Grzyby — Głowowce, Pleśniakowate (In:)
Flora Polska 10, Warszawa.
Zdybniwska M. 1968, Mikrobiologiczny rozkład związków fenolowych, Pod-
stawy Mikrobiol. 7 (1): 161-179.