Mikoflora fyllosfery

ELŻBIETA CHRUŚCIAK

Instytut Gleboznawstwa i Chemii Rolnej Akademii Rolniczej
Rakowiecka 26/30, 02-528 Warszawa

The qualitative content of the mycoflora of the phyllosphere of *Sambucus nigra*, *Taraxacum officinale*, *Secale cereale* and *Brassica napus* was examined. The dominance of yeast-like fungi from the genera *Trichosporon*, *Torulopsis* and *Rhodotorula* on the leaves of *Sambucus nigra* and of *Torulopsis* on the leaves of *Taraxacum officinale* was observed. In the phyllosphere of *Secale cereale* and *Brassica napus* the number of these fungi was more limited. An attempt was made to isolate strains capable of decomposition of proteins, lipids, pectin and cellulose from the obtained fungi was made.

WSTĘP

Termin fyllosfera zaproponowali niezależnie od siebie Ruinen (1956) i Last (1955), określając nim przez analogię z ryzosferą środowisko, jakim jest powierzchnia liścia. Na liściach bytuje wiele drobnoustrojów znajdujących warunki rozwoju dzięki wydzielinom tego organu. Według określenia Ruinen fyllosfera jest środowiskiem ekologicznym całkowicie „zaniedbanym”.

MATERIAŁ I METODY

Niniejsze doniesienie poświęcone jest badaniom jakościowym i ilościowym mikoflory epifilicznej czterech roślin: dwóch uprawnych — Secale cereale i Brassica napus oraz dwu dziko rosnących — Sambucus nigra i Taraxaccum officinale. Pochodziły one z różnych siedlisk — dwie pierwsiawe ze zbiorowiska ruderalnego w Warszawie, pozostałe z połetek w Wilanowie. W obu zespołach starano się pobierać próbki liści roślin blisko ze sobą sąsiadujących, chodziło bowiem o ustalenie, czy skład gatunkowy mikoflory fyllosfery różnych roślin danego stanowiska jest zbliżony, czy też jest determinowany przez wydzieliny liści konkretnych gatunków roślin.

Do poszczególnych analiz pobierano po 20 zdrowych liści każdej rośliny (terminy pobrania próbek podano w tab. 2.). Liście Sambucus nigra pochodziły z dolnych części roślin (do kilku analiz dla porównania pbrano także z górnej partii), natomiast liście Taraxaccum, Secale i Brassica wybierano losowo z różnych części roślin.

Bezpośrednio po przeniesieniu liści w jalowych woreczkach z folii do laboratorium wycinano z nich fragmenty o powierzchni 1 cm². Umieszczano je w kolbikach zawierających 10 ml jalowej wody i poddawano wytrząsaniu na wstrząsarce (universalna typ WU-2, 90 wahnięć/min) w ciągu 10 minut.

Dla określenia ogólnej liczby występujących grzybów popłuczyny z powierzchni wycinków liści w suiciwano po 0,2 ml do płytek Petriego z podłożem Martina, w pięciu równoległych powtórzeniach. Aby ustalić ogólną liczbę drobnoustrojów tę samą zawiesinę wysiewano na agar odżywczy (bulion mięsny zestalony 2% agarem). Wszystkie płytki inkubowano przez 3-5 dni w temperaturze 28°C. Po okresie inkubacji obliczano na podstawie ilości wyrosłych kolonii liczebność grzybów oraz tzw. ogólną liczbę drobnoustrojów. Szczegły grzybów izolowano i określano ich przynależność systematyczną.

Równolegle z opisanym wyżej wysiewem stosowano przyjętą w podobnych badaniach technikę odciskową — na agaryzowanym podłożu Martina odciskano górną lub dolną powierzchnię liści. Tą drogą uzyskiwano niejednokrotnie szczepy grzybów, których nie izolowano metodą wyżej opisaną.

Wychodząc z założenia, że w rozwoju grzybów w fyllosfere pewną rolę odgrywają wytwarzane przez nie enzymy, ograniczono doświadczenia do ujawnienia polgalakturonaz, lipazy, celulazy i proteaz, ponieważ większość grzybów rozkładu cukry proste i dwucukry. Zdolność do rozkładu pektyny określano wg metody podanej przez Wierbiną (1969).

Rozkład tłuszczów badano na podłożu o składzie — 1% agar wodny
z dodatkiem 10 g/l tłuszczu, blękít bromotymolowy jako wskaźnik. Wokół szczepów grzybów lipolitycznych obserwowano zmianę zabarwienia podłoży z niebieskiego na żółte pod wpływem wytworzonych wolnych kwasów tłuszczowych.

Tabela 1 — Table 1
Grzyby wyizolowane z fillosfery w sezonie wegetacyjnym 1970 r.
Fungi isolated from the phyllosphere in the vegetative season 1970

<table>
<thead>
<tr>
<th>Sambucus nigra</th>
<th>Taraxacum officinale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria tenuis Nees</td>
<td>Alternaria tenuis Nees</td>
</tr>
<tr>
<td>Aspergillus candidus Link</td>
<td>Aspergillus fumigatus Fres.</td>
</tr>
<tr>
<td>Cephalosporium acremonium Corda</td>
<td>A. nidulans (Eidam) Winter</td>
</tr>
<tr>
<td>Cladosporium herbarum (Pers.) Link</td>
<td>A. sydowii (Bain. and Sart.) Thom</td>
</tr>
<tr>
<td>Fusarium avenaceum (Fr.) Link</td>
<td>Cladosporium herbarum (Pers.) Link</td>
</tr>
<tr>
<td>Gelatinospora retispora Cain</td>
<td>Fusarium sp</td>
</tr>
<tr>
<td>Mucor fragilis Bain.</td>
<td>Hormiscium stilbosporum (Corda) Saec.</td>
</tr>
<tr>
<td>Oidium lactis Fres.</td>
<td>Heterosporium gracile Klotzsch.</td>
</tr>
<tr>
<td>Paecilomyces elegans (Corda) Mason et Hughes</td>
<td>Mucor fragilis Bain.</td>
</tr>
<tr>
<td>Penicillium rugulosum Thom</td>
<td>M. microspores Namyslowski</td>
</tr>
<tr>
<td>Rhodotorula glutinis (Fres.) Harrison</td>
<td>M. plumbeus Bon.</td>
</tr>
<tr>
<td>Torulopsis inconspicua Lodder</td>
<td>Oidium lactis Fres.</td>
</tr>
<tr>
<td>Trichosporon capitatum Diddens et Lodder</td>
<td>Paecilomyces elegans (Corda) Mason et Hughes</td>
</tr>
<tr>
<td>Trichothecium roseum Link</td>
<td>Rhodotorula glutinis (Fres.) Harrison</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secale cereale</th>
<th>Brassica napus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria tenuis Nees</td>
<td>Alternaria tenuis Nees</td>
</tr>
<tr>
<td>Aspergillus versicolor (Vuill.) Tiraboschi</td>
<td>Aspergillus fumigatus Fres.</td>
</tr>
<tr>
<td>Cladosporium herbarum (Pers.) Link</td>
<td>Cladosporium herbarum (Pers.) Link</td>
</tr>
<tr>
<td>Coniothyrium fuckelii Sacc.</td>
<td>Mucor fragilis Bain.</td>
</tr>
<tr>
<td>Fusarium graminium Corda</td>
<td>Penicillium spp</td>
</tr>
<tr>
<td>Rhizopus nigricans Ehrenberg</td>
<td>Rhodotorula glutinis (Fres.) Harrison</td>
</tr>
<tr>
<td>Rhodotorula glutinis (Fres.) Harrison</td>
<td>Torulopsis inconspicua Lodder</td>
</tr>
<tr>
<td>Trichoderma glaucum Abbott</td>
<td></td>
</tr>
</tbody>
</table>
Rozkład białka badano na żelatynie odżywnej, przyjmując za szczepy proteolityczne wykazujące upłynnięcie podłoża.
Jako grzyby celulolityczne traktowano te, które na pożywce Dubosa z paskami bibuły jako jedynym źródłem węgla powodowały w nich ubytki i przebarwienia.

WYNIKI

Na podstawie listy wyizolowanych gatunków grzybów łatwo przekonać się o znacznym podobieństwie składu mikoflory fyllosfery roślin pochodzących z tego samego stanowiska (tab. 1). Zwraca uwagę dominujący udział grzybów drożdżoidalnych z rodzajów *Trichosporon*, *Rhodotorula* i *Torulopsis* w fyllosferze *Sambucus* oraz *Rhodotorula* i *Torulopsis* w fyllosferze *Taraxacum* (tab. 2). Ich populacja stanowiła przeciętnie 50-80% ogólnej liczebny grzybów w kolejnych analizach. Udział tych grzybów w fyllosferze żyta i rzepaku wynosił 5-15%. W ozniakowski (1962) także podaje, że na liściach roślin dziko rosnących bytuje znacznie więcej grzybów drożdżoidalnych niż na roślinach zbożowych. Pozostałe z wyodrębnionych grzybów reprezentują pospolecie występujące rodzaje, spotykane m. in. w glebie, nanoszone przez wiatr, wodę, owady.

W ciągu sezonu wegetacyjnego obserwowano dość znaczną wahania w ilości izolowanych drobnooustrojów (tab. 2), wynikające przypuszczalnie ze zmieniających się czynników klimatycznych, różnic w stężeniu cukrów i innych substratów pokarmowych. Liczyć się także należy z pewnym błędem metody (płytkowej), którą posłużono się dla dokonania izolacji.

Mówiąc o ogólnej liczbie grzybów występujących na powierzchni analizowanych liści, należy pamiętać, że uzyskane wskaźniki występowania tej grupy organizmów limitowane były przez rodzaj zastosowanego podłoża — pożywka Martina jest zbyt uboga dla większości grzybów patogenicznych. Uzyskane dane są więc niepełne tak pod względem jakościowym, jak ilościowym.

Wyniki przedstawione w tabeli 2 dla *Sambucus nigra* charakteryzują liście dolnej partii wybranej do obserwacji rośliny. Nie objęto tabelą kilku analogicznych wyników uzyskanych dla górnego piętra. Dane te przykładowo przedstawione są poniżej:

<table>
<thead>
<tr>
<th>Ogólna liczba</th>
<th>Na liściach</th>
<th>Data obserwacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>grzybów</td>
<td></td>
<td></td>
</tr>
<tr>
<td>górnych</td>
<td>220</td>
<td>400</td>
</tr>
<tr>
<td>dolnych</td>
<td>1300</td>
<td>6300</td>
</tr>
<tr>
<td>drobnooustrojów</td>
<td></td>
<td></td>
</tr>
<tr>
<td>górnych</td>
<td>560</td>
<td>800</td>
</tr>
<tr>
<td>dolnych</td>
<td>2000</td>
<td>9000</td>
</tr>
</tbody>
</table>
Tabela 2 — Table 2

Liczność drobnoustrojów epifitycznych w 1970 r. w przeliczeniu na 1 cm² liścia

The number of epiphytic microorganisms in 1970 per cm² square of leaf

<table>
<thead>
<tr>
<th>Termin pobrania próbek liści</th>
<th>Sambucus nigra</th>
<th>Taraxacum officinale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date on which sample was collected</td>
<td>ogólna liczba grzybów</td>
<td>% grzybów drożdżoidalnych</td>
</tr>
<tr>
<td></td>
<td>total number of fungi</td>
<td>% of yeast-like fungi</td>
</tr>
<tr>
<td>22. IV</td>
<td>1300</td>
<td>46</td>
</tr>
<tr>
<td>12. V</td>
<td>2160</td>
<td>52</td>
</tr>
<tr>
<td>18. V</td>
<td>6300</td>
<td>70</td>
</tr>
<tr>
<td>29. V</td>
<td>3600</td>
<td>65</td>
</tr>
<tr>
<td>6. VI</td>
<td>2450</td>
<td>62</td>
</tr>
<tr>
<td>18. VI</td>
<td>4150</td>
<td>50</td>
</tr>
<tr>
<td>7. VIII</td>
<td>4240</td>
<td>55</td>
</tr>
<tr>
<td>22. VII</td>
<td>3200</td>
<td>55</td>
</tr>
<tr>
<td>31. VIII</td>
<td>2930</td>
<td>60</td>
</tr>
<tr>
<td>8. IX</td>
<td>8030</td>
<td>60</td>
</tr>
<tr>
<td>21. IX</td>
<td>2970</td>
<td>52</td>
</tr>
<tr>
<td>5. X</td>
<td>5650</td>
<td>65</td>
</tr>
<tr>
<td>12. X</td>
<td>4830</td>
<td>53</td>
</tr>
<tr>
<td>19. X</td>
<td>5980</td>
<td>62</td>
</tr>
<tr>
<td>29. X</td>
<td>6000</td>
<td>60</td>
</tr>
<tr>
<td>2. XI</td>
<td>7840</td>
<td>56</td>
</tr>
</tbody>
</table>

Secale cereale

<table>
<thead>
<tr>
<th>Brasica napus</th>
<th>520</th>
<th>7</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. V</td>
<td>160</td>
<td>---</td>
<td>120</td>
</tr>
<tr>
<td>3. VI</td>
<td>100</td>
<td>5</td>
<td>250</td>
</tr>
<tr>
<td>17. VI</td>
<td>200</td>
<td>15</td>
<td>1100</td>
</tr>
<tr>
<td>Nazwa grzyba Species</td>
<td>Poligalakturonaza Polygalakturonidase</td>
<td>Lipaza Lipase</td>
<td>Proteazy Proteases</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>M</td>
<td>Z</td>
</tr>
<tr>
<td>Alternaria tenuis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus candidus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus nidulans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus sydowi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus versicolor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporium acremonium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladosporium herbarum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelasinospora retispora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosporium greceile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium graminum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormiscium stilbosporum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucor fragilis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. microsporus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. plumbeus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oidium lactis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paecilomyces elegans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillium rugulosum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizopus nigrancis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodotorula glutinis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torulopsis inconspicua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoderma glaucom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichosporon capsitatum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichothecium roseum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rozkład substratu — decomposition of substrat: ± niewyraźny — slight; + wyraźny — marked; ++ intensywny — intensive.
Wynika z nich, że na dolnych liściach Sambucus nigra populacja grzybów i ogólna liczba drobnoustrojów były liczniejsze. Fakt ten może być m. in. konsekwencją mechanicznego spłukiwania drobnoustrojów z górnych parti w czasie deszczu (dżdżyte lato). Nie bez wpływu pozostawał przypuszczalnie także bliski kontakt gleby, jakkolwiek Stout (Kermén 1968) podaje, że oba środowiska — gleba i fyllosfera zachowują swą integralność.

W tabeli 3 przedstawiono charakterystykę wybranych szczepów grzybów pod względem zdolności wytwarzania przez nie enzymów rozkładających pektynę, białka, tłuszcze i celulozę. Notowano dość znaczną liczbę szczepów lipolitycznych i proteolitycznych. Zdolność do rozkładu białek i lipidów pochodzących bądź z wydzielin liści, bądź z obumarłych innych mikroorganizmów ułatwiała rozwój grzybów w fyllosferze. Mniejsze znaczenie dla ich bytowania i zasiedlania badanego środowiska odgrywały dwa pozostałe enzymy, gdyż opisane grzyby były saprofitami. Niemniej w sytuacji, gdy liść ulega osłabieniu w warunkach nie sprzyjających, czy szkodliwych, w okresie starzenia pewne saprofity mogą stawać się okolicznościowo patogenami (Dunleavy 1966) i wówczas enzymy te stają się czynne.

WNIOŚKI

1. Na liściach Sambucus nigra, Taraxaccum officinale, Secale cereale i Brassica napus występowało w sezonie wegetacyjnym 1970 r. wiele saprofitów. W mikoflorze fyllosfery roślin dzioko rosących dominowały grzyby drożdżoidalne z rodzajów Trichosporon, Rhodotorula, Torulopsis. W fyllosferze Secale cereale i Brassica napus stanowiły one o wiele mniej liczną populację.

2. Skład gatunkowy wyizolowanych z liści roślin tego samego stano-wiska wykazywał znaczne podobieństwo.

4. Wśród wyizolowanych grzybów wiele szczepów zdolnych było do rozkładu pektyny, celulozy, białka i lipidów.

LITERATURA

Dunleavy J., Kunkel J. F., Hanway J. J., 1966, High population of Ba-
cillus subtilis associated with phosphorus toxicity in soybeans, Phytopathology 56: 83-87.

