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Abstract
Chemical elements in the samples of wild edible mushrooms of the Morchella 
group collected from different unpolluted Sicilian sites was analyzed by the ICP-MS 
(method) to detect the content of their minerals and determine whether soil geology 
and geochemistry can influence the chemical composition in fungi. Results showed 
that the mushroom samples mainly contained a high concentration of K and P and 
a wide variety of minor and trace elements (V, Mo, Pb, Ce, Cs, Zr), including heavy 
metals. Statistical analysis showed that the mushrooms differed in their content 
of minor and trace elements based on the geological/geographic site of origin. 
Comparison with other studies showed differences in the content detected in the 
Sicilian morels with those collected from other geographical sites. Conversely, dif-
ferent fungal species collected from similar geological sites in Sicily showed different 
patterns of accumulation of the elements confirming that bioconcentration in fungi 
is species- and site-dependent.
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Introduction

It is well known that fungi accumulate chemical elements from their environment, 
particularly from soils and soil solutions [1–6]. The mineralogical composition of soil 
influences the availability of chemical elements and the mycelia of fungi absorb and 
accumulate all kinds of elements from their growth substrates. Although the capacity 
of accumulation and the presence of chemical elements in the fruiting bodies [7] of 
fungi depend on their nutritional requirements and can differ on the basis of genetic 
characteristics, several authors have confirmed that the content of elements in both 
micro- and macrofungi is mainly influenced by the chemical composition of the sur-
rounding environment (water, air, and soil) [8–10].

The ability of fungi to take up elements makes them useful soil quality indicators 
as well as potential bioremediation agents for substrata contaminated with toxic ele-
ments such as heavy metals, metalloids, and radionuclides [11–16]. For instance, some 
authors [17] have observed that the macrofungal species Agaricus macrosporus Mont. 
may be effective in extracting heavy metals, such as mercury and cadmium, from 
contaminated soils.

In several studies, the presence of heavy metals in edible and nonedible fungal species 
from both, polluted and unpolluted sites, has been analyzed [1–3,5,9,17]. However, till 
date, very few studies have actually analyzed the influence of geology, soil-mineralogy, 
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and soil-chemistry on the chemical content of the fruiting bodies or investigated the 
correlation between chemical elements in fungi and their soil of growth [4,8,11,18]. 
For instance, Nikkarinen and Mertanen [8] analyzed the content of elements in two 
ectomycorrhizal species namely Boletus edulis Bull. and Lactarius trivialis (Fr.) Fr. from 
two different geological regions in Finland to determine whether any geochemical 
fingerprints can be observed in these fungi. They found that the macrofungal samples 
differed considerably in their content of trace elements based on the geological and 
geographic site of origin. Nonnis Marzano et al. [18] used chemical and radiochemical 
methodologies to analyze the concentrations of artificial radionuclides and trace elements 
in Boletus samples (known as “Porcini”) collected from different geographical areas 
across the globe. Their results showed that the content of chemical and radiochemical 
elements in the fruiting bodies reflect the geological/chemical background of the envi-
ronment and, therefore, can be used to determine the geographic site of origin.

Analyzing the mineral content and correlating it with the bedrock and soil geo-
chemistry is particularly important for wild edible mushrooms due to their economic 
and social importance. Over 2,000 fungal species are known to produce edible fruiting 
bodies that are harvested, marketed and consumed in more than 85 countries around 
the world [19–23]. The global market value of edible mushrooms is estimated to be 
at least $2 billion, which is more than the value of timber [19,24,25]. When toxic ele-
ments (e.g., heavy metals) are present in the growth substrates, they can accumulate 
in the fungi and may pose a risk to human health. Particularly, the content of metals 
and metalloids is likely to be higher in mushrooms than those in agricultural crops, 
plants, vegetables, and fruits [6].

In this paper, the following approaches were undertaken to determine whether the 
bedrock and soil chemistry influences the content of elements in wild mushrooms: (i) 
we analyzed the chemical content in the wild edible fruiting bodies of morels (Morchella 
spp.) collected from different unpolluted sites in the south of Italy (Sicily). Our objec-
tive was to compare the content of major, minor, and trace elements in the fruiting 
bodies of mushrooms obtained from different geological sites in Sicily and investigate 
whether the observed differences could be correlated to those in the bedrock and soil 
geochemistry; (ii) moreover, using a set of literature data on the bedrock and (top) 
soil composition in Sicily, Italy, Europe and the rest of the world, we determined the 
accumulation factor (a.f.) of different elements in the fungal samples to assess which 
elements are accumulated in mushrooms at concentrations higher than those in the soil; 
(iii) finally, we compared the data thus obtained with those of mushrooms analyzed from 
other geographic/geological sites to determine whether soil geology and geochemistry 
can influence the chemical components present in the fungi; (iv) we also compared 
our data with those of other fungal species to understand whether different species of 
edible wild mushrooms originating from similar geological sites of Sicily differ in their 
preferences for the accumulation of specific elements.

Two species within the Morchella genus, M. elata Fr. and M. esculenta (L.) Pers., were 
chosen for this study because they are the ones that are majorly consumed globally [22] 
and give an estimated worldwide income of ~$1.67 billion [19,26,27].

Material and methods

Study sites

Ten sampling sites were selected from the province of Palermo in Sicily between the 
Natural Regional Park of Madonie and the Palermo Mountains (Fig. 1). Tab. 1 gives 
complete details on the study sites. Overall, we selected different Mediterranean veg-
etation types including both native (e.g., broadleaf and evergreen plants) and planted 
(e.g., conifers) wooded areas. The geology of the selected sites consisted of dolomitic 
limestone, carbonate rocks (S1–S3 and S6–S10), and flyschoid rocks (S4–S5).

The climate in the province of Palermo is the Mediterranean pluviseasonal-oceanic 
type [28]. The mean annual temperature is 18.4°C and varies from 26.2°C in August 
to 12.1°C in January. The mean annual rainfall is 605 mm and varies from 90 mm in 
December to 4 mm in July [29].
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Fig. 1 Map of the study sites and the picture of M. esculenta.
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Sampling

During the season favorable for fungal growth, in April and May 2014, several mycologi-
cal surveys were carried out at the selected study sites. The fruiting bodies/mushrooms, 
namely M. elata Fr. and M. esculenta (L.) Pers. (F1–F10 in Tab. 1), were sampled from 
10 unpolluted sites of Sicily (refer Fig. 1 and Tab. 1). Each sample consisted of 1–3 
fungal specimens comprising a complete fruiting body (cap, stipe, and hymenium). 
Samples of the mushrooms were cleaned of forest debris (without washing) using a 
brush, transported to the laboratory and kept at −4°C for no more than 24 h prior to 
sample preparation.

Identification of the species and description of the fruiting bodies/ascomata were 
carried out for both fresh and dried specimens by macro- and microscopic observations. 
The macroscopic descriptions of the fresh ascomata were noted while the microscopic 
features were observed using an Olympus BH-2. The dried specimens were prepared 
for microscopic observations using a solution of 0.3% KOH and the Melzer reagent. 
Spore measurements were based on 50 observations conducted for each of the dried 
samples. For taxonomical identification, a series of monographs and keys were used 
by Breitenbach and Kränzlin [30], Courtecuisse R and Duhem [31], and Boccardo et 
al. [32].

We followed the methods of systematic classification described previously for the 
classification of mushrooms [7,33]. Nomenclature and author abbreviations were 
used in accordance with [34–36]. Studied specimens were deposited at the Herbarium 
Panormitanus (PAL), Italy.

Tab. 1 Details of the study sites: code, locality with GPS coordinates, geology, and vegetation type. Fungal species and their cor-
responding codes are detailed in the last two columns.

Site Locality – municipality Geology Vegetation type Fungal species Mushrooms code

S1 Monte Petroso – Monreale
(38°06'03.1" N, 13°15'43.2" E)

Carbonate rocks Quercus ilex – na-
tive wood

Morchella elata F1

S2 Castellaccio – Monreale
(38°04'49.5" N, 13°15'48.9" E)

Carbonate rocks Pinus 
pinea – plantation

M. elata F2

S3 Castellaccio – Monreale
(38°05'05.4" N, 13°15'58.2" E)

Carbonate rocks Pinus 
pinea – plantation

M. elata F3

S4 Fontana Bosco – Palermo
(37°53'34.8" N, 13°23'28.4" E)

Flyschoid rocks Quercus cerris 
var. gussonei and 
Fraxinus angus-
tifolia – native 
mixed wood

M. esculenta F4

S5 Fontana Bosco – Palermo
(37°53'21.7" N, 13°23'33.4" E)

Flyschoid rocks Quercus cerris 
var. gussonei and 
Fraxinus angus-
tifolia – native 
mixed wood

M. esculenta F5

S6 Mandria Zarcati – Carini
(38°09'12.5" N, 13°16'04.3" E)

Carbonate roks Pinus halepen-
sis – plantation

M. elata F6

S7 Mandria Zarcati – Carini
(38°09'08.8" N, 13°15'52.9" E)

Carbonate rocks Pinus halepen-
sis – plantation

M. elata F7

S8 Pizzo colla – Polizzi Generosa
(38°09'08.8" N, 13°15'52.9" E)

Carbonate rocks Fagus sylvatica – 
native forest

M. elata F8

S9 Bevaio del Faggio – Isnello
(37°52'14.6" N, 14°00'33.4" E)

Carbonate rocks Pinus 
nigra – plantation

M. elata F9

S10 Bevaio del Faggio – Isnello
(37°52'14.6" N, 14°00'33.4" E)

Carbonate rocks Fagus sylvatica – 
native forest

M. elata F10
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Chemical analysis

The fruiting bodies were dried for 12 hours at 37°C in an electrically heated commercial 
dehydrator for mushrooms, fruits, and vegetables (Melchioni 118320000 Babele, 245 
W). The dried fungal material was ground into powder using an agate mortar and 
stored in polyethylene bags under dry conditions. Powdered mushrooms (~0.700 g) 
were digested using a mixture of 5 mL of 65% HNO3 (Suprapure, Merck) and 2.5 mL of 
33% H2O2 (Suprapure, Merck). The digest was diluted to 50 mL using deionized water 
(18 MΩ). Ca, K, Na, and Mg were analyzed using the ion chromatograph Dionex 120, 
with a precision greater than ±5%. The presence of 24 elements (Ag, Al, As, Ba, Be, Bi, 
Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V, and Zn) in the digested 
extract was determined using an inductively coupled plasma-mass spectrometer (ICP-
MS) (Elan 6100 DRC-e, PerkinElmer). For the detection of As, Cr, Fe, Se, and V, the 
ICP-MS was operated in the DRC (Dinamic Reaction Cell) mode with methane as the 
reaction gas. All standard solutions were prepared with ultra-pure deionized water (18 
MΩ) and reagent-grade chemicals (ICP multielement standard solution XXI Certi-
PUR – Merck; Mo and Sb, CertiPUR standards – Merck). Calibration curves ranging 
from 0.05 μg/L to 500 μg/L were constructed. The standard addition technique was 
used for all analyses in order to minimize the matrix effects. Sample blanks were also 
analyzed and the operational detection limit for each element was calculated as three 
times the standard deviation of the analyte concentration in the blank samples. Values 
below the detection limit were set at one-third of the detection level and treated as 
real values. Analytical precision was in the range 1–11% for all the analyzed elements. 
For validation of the analytical procedure, the standard reference material NIST SRM 
1515 Apple Leaves was analyzed for the corresponding elements. The rates of recoveries 
for metal were in good agreement with the certified concentrations, ranging between 
94% and 111%.

All the analyzed elements are detailed as follows:
 ■ Alkali metals: Li, Na, K, Rb, Cs.
 ■ Alkaline earth metals: Mg, Ca, Sr, Ba.
 ■ Transition metals or d-block elements: Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, 
Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg.

 ■ Semimetals: B, Ge, As, Te, Sb.
 ■ Post-transition metals: Al, Ga, Tl, Sn, Pb, In, Bi.
 ■ Lanthanides: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
 ■ Actinides: Th, U.
 ■ Nonmetals: P, Se.

In total, the concentrations of 63 elements were determined (see Appendix S1 for 
a complete list) and converted from ppb to ppm for statistical analyses, as detailed in 
the following data analysis paragraph.

Data analysis

Quantitative data, referred to as the chemical concentrations of the elements in ppm, 
were analyzed statistically using the vegan package in R [37]. Descriptive statistical 
tools (histograms) were used to compare the concentrations of major, minor, and trace 
elements in each of the fungal samples.

We also used the whole dataset (see Appendix S1) to detect the a.f. in the fungal 
samples. The a.f. refers to the ratio of the concentration of a specific element in the 
mushroom samples to the concentration of that element in the soil (or native rock/
bedrock). The a.f. was computed in accordance with Cocchi et al. [9] by comparing 
the concentration of each element detected in the fungal samples with the average 
concentrations of the same element in the soil. As a proxy for the average concentrations 
of elements in the soil, we used known concentrations of the elements in comparable 
soil types (Appendix S2). This information was obtained from a set of literature data on 
the bedrock and (top) soil composition in Sicily, Italy, Europe and the rest of the world 
[38–49]. Histograms were used to indicate the accumulation factor.
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Finally, a hierarchical cluster analysis (CA) using the Bray–Curtis dissimilarity 
index and unweighted pair group method with arithmetic mean UPGMA [50] were 
carried out to discern the degree of similarity between the content of chemicals in the 
mushroom samples and the selected bedrocks or soil types.

Results

Appendix S1 lists all the 63 chemical elements detected in each of the mushroom 
samples (F1–F10).

The values of major elements (20 in total) measured in the mushroom samples ranged 
from 0.01 ppm (Sb) to 4,300 ppm (K) (Fig. 2) in the following order of abundance: K 
> P > Ca > Mg > Na > A > Fe > Zn > Cu > Mn > Rb > Ti > Cd > Au > Sr > B > Ba > 
Cr > Ni > Sb.

Minor and trace elements (26 in total) ranged from 0.001 ppm (U) to 1.26 ppm 
(V) (Fig. 3) in the following order of abundance: V > Mo > Pb > Ce > Cs > Zr > Ag 
> Li > Se > Y > Co > La > As > Nd > Ga > Tl > Hg > Nb > Th > Pr > Sm > Gd > Ge > 
Yb > Te > U.

Seventeen other elements were detected under the limits of this detection method 
(see Appendix S1).

Overall, the concentrations of the major elements showed a very similar distribu-
tion across the mushroom samples (Fig. 2); however, in the cases of minor and traces 
elements (Fig. 3), different patterns were observed in the collected mushrooms. For 
instance, in F3, we found a higher concentration of Pb, V, Zr, and Ce than that in the 
other samples.

When comparing the concentrations of elements in the mushroom samples (F1–F10, 
see Appendix S1) with those in the carbonate rocks, according to the selected literature 
datasets, flyschoid rocks + clays, Earth’s crust and topsoil of Sicily, Italy, Europe, and 
the rest of the world (Appendix S2), we could not conclude whether some elements 
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are accumulated better than the others, because the concentrations of such elements in 
the analyzed mushroom samples were below the detection limits. Some other elements 
show an a.f. that can be clearly correlated to the average value of those elements detected 
in their corresponding bedrocks and topsoil (Fig. 4). Particularly, an accumulation of 
the following six elements was detected in the sampled mushrooms: Ag, Cd, Cu, K, P, 
and Zn (see Fig. 4). Appendix S3 represents the a.f. for each mushroom sample and 
the reference soil type.

Results of the CA in Fig. 5 show that the samples of morels (F1–F10) and the rock/
soil types used for comparison (carbonate rocks, Earth’s crust and topsoil from Sicily, 
Italy, Europe, and the rest of the world) form two distinctive clusters and the mush-
room samples are placed into clusters on the basis of the geographic and geologic site 
of collection.

Discussion

Based on the results on samples of Morchella spp. obtained in this study, we can confirm 
that fungi can accumulate different elements from their substrata (especially soil) of 
the areas where they grow. The content of elements in the morels used for this study 
consisted of high concentrations of K and P and a wide pattern of minor and trace 
elements (e.g., V, Mo, Pb, Ce, Cs, Zr), including heavy metals.

Moreover, when the content of elements in the studied specimens was compared with 
the average concentration values in the bedrock and soil types (see Appendix S2), it was 
observed that the morels had accumulated six elements in particular which included 
the ones found abundantly in the Earth’s crust (K, P, and Zn; Fig. 4) and heavy metals 
such as Ag, Cd, and Cu. These results confirm that fungi are characterized by the pres-
ence of high concentrations of K in their structures, which are comparable with those 
found in some agricultural crops, plants, and vegetables such as spinach and potatoes 
[6], as well as the presence of (heavy) metals like Cd and Pb. It is worth noting that the 
content of Cd in the soil is mainly influenced by the native rock (e.g., high in carbonate 
rocks) and is particularly abundant in anthropized soil. Moreover, the concentrations 
of Cd and Pb in the analyzed mushrooms were below the threshold limits for wild 
mushrooms specified by the European directives [51,52].

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10
Ag 0.2 0.056 0.122 0.2 0.056 0.289 0.233 0.222 0.289 0.367
As 0.165 0.153 0.225 0.093 0.075 0.06 0.06 0.072 0.101 0.147
Ce 0.441 0.358 0.843 0.188 0.161 0.03 0.04 0.162 0.025 0.093
Co 0.252 0.164 0.277 0.114 0.062 0.061 0.085 0.102 0.091 0.104
Cs 0.451 0.362 0.346 0.0478 0.102 0.147 0.182 0.063 0.0497 0.476
Ga 0.164 0.139 0.236 0.01 0.024 0.04 0.041 0.047 0.022 0.047
Gd 0.045 0.035 0.081 0.009 0.008 0.002 0.003 0.014 0.002 0.007
Ge 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02
Hg 0.02 0.06 0.05 0.03 0.02 0.04 0.03 0.04 0.04 0.06
La 0.266 0.196 0.488 0.099 0.086 0.016 0.02 0.079 0.015 0.047
Li 0.41 0.33 0.67 0.1 0.07 0.09 0.07 0.12 0.03 0.12
Mo 0.416 0.452 0.343 0.224 0.23 0.247 0.199 0.369 0.233 0.284
Nb 0.065 0.043 0.125 0.023 0.012 0.005 0.005 0.017 0.023 0.01
Nd 0.235 0.184 0.446 0.072 0.061 0.013 0.02 0.07 0.011 0.039
Pb 0.43 0.53 1.09 0,0 2 0.05 0.05 0.06 0.1 0.02 0.08
Pr 0.059 0.046 0.109 0.021 0.019 0.005 0.005 0.018 0.005 0.01
Se 0.03 0.24 0.21 0.03 0.03 0.1 0.15 0.27 0.49 0.25
Sm 0.048 0.036 0.082 0.013 0.01 0.004 0.005 0.014 0.002 0.009
Te 0.014 0.011 0.013 0.003 0.003 0.004 0.008 0.003 0.003 0.003
Th 0.06 0.05 0.11 0.02 0.02 0.01 0.01 0.02 0.01 0.01
Tl 0.132 0.129 0.093 0.004 0.005 0.039 0.052 0.016 0.002 0.078
U 0.016 0.011 0.018 0.003 0.003 0.022 0.001 0.004 0.001 0.004
V 0.8 0.62 1.26 0.15 0.16 0.08 0.06 0.24 0.07 0.31
Y 0.383 0.22 0.549 0.025 0.025 0.013 0.017 0.052 0.009 0.043
Yb 0.026 0.016 0.041 0.003 0.002 0.002 0.001 0.003 0.001 0.004
Zr 0.5 0.3 0.89 0.14 0.07 0.02 0.03 0.07 0.02 0.06
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Fig. 5 Cluster dendrogram of matrix distance of the mushroom samples and soil types (carbonate rocks, Earth’s crust and topsoil 
from Sicily, Italy, Europe, and the rest of the world) based on the content of their elements.

Fig. 4 Content of Ag, Cd, Cu, K, P, and Zn in mushroom samples (F1–10) and the rocks and soil types.
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Statistical analysis showed that the mushroom samples (F1–F10) were clustered on 
the basis of the soil type. Samples F1–F3 and F6–10 (except F9) were collected from 
the carbonate rock and formed a separate group (viz. sister group) from samples F4–
F5, which were collected from sites with a substratum developed on flyschoid rocks. 
Similarly, the second cluster (see right side in Fig. 5) was established by bedrock and 
soil types (e.g., topsoil, Earth’s crust, carbonate and flyschoid rocks) and samples therein 
formed sister groups on the basis of their geological differences. Based on these results, 
we can observe that both site geology and geochemistry can influence the chemical 
composition in wild mushrooms.

It is challenging to compare our results with those of others because, till date, very 
few studies are available that have analyzed all the elements in morels and evaluated the 
influence of bedrock or soil geochemistry in this fungal group. For instance, Cenci et 
al. [53] studied heavy metals in samples of some morels collected from Central Italy (in 
the Emilia-Romagna region) and found a higher content of Hg (0.28–2.7 mg/kg) than 
that observed in the Sicilian morels of our study (Hg = 0.05–0.33 mg/kg). Conversely, 
the content of Cd detected in our samples (0.18–21.5 mg/kg) was higher than that in 
the morels of Central Italy (Cd = 0.19–4.12 mg/kg [53]), or in some Morchella species 
found in Turkey (Cd = 0.036–1.43 mg/kg [54]).

Despite a differences in the geological sites, the Cu content in our samples (10.6–63 
mg/kg) was very similar to that detected from the morels of Central Italy (43.65–63.39 
mg/kg), whereas the content of Ag in the Sicilian samples (0.05–0.22 mg/kg) was lower 
than that found by Cocchi et al. [9] (Ag = 0.28–2.7 mg/kg).

We were also interested in understanding whether different species of edible wild 
mushrooms collected from similar geological sites would exhibit differences in the ac-
cumulation of elements. We compared our dataset with that of Venturella et al. [4] and 
Alaimo et al. [6], including information on the mineral contents of some bolets [e.g., 
Boletus aereus Bull., B. reticulates Schaff., B. impolitus Fr., B. lupinus Fr., B. queletii, B. 
rhodoxanthus (Krombh.) Kallenb., B. satanas Lenz, and Leccinum lepidum (H. Bouchet 
ex Essette) Bresinsky & Manfr. Binder] and Clitopilus prunulus P. Kumm collected in 
the sedimentary sites (flyschoid or calcareous substrates) of Sicily. Although all species 
had a high concentration of K and Na [4,6], the bioconcentration of the other elements 
appeared to be element- and species-depended. For example, Co, Cr, Fe, Mg, Mo, Pb, 
U, and V was four folds higher in C. prunulus than that detected in the bolets analyzed 
from similar geological sites.

To summarize, the results obtained in this study confirmed that fungi (here, the 
Morchella group) accumulate all kinds of elements (including heavy metals) and that 
the bedrock or soil geochemistry can influence patterns of their minerals. The chemical 
content of elements in our morel samples was characterized by high concentrations of 
K and P. Additionally, a wide number of minor and trace elements, including heavy 
metals, were accumulated in the fruiting bodies.

A comparison of our results with those of other studies demonstrated that the same 
fungal species (in this case, Morchella spp.), collected from different geological and 
geographic sites was characterized by a differing content of minor and trace elements 
in their bodies. Conversely, different fungal species collected in similar geological sites 
(in Sicily) exhibited different patterns of accumulation of the elements. This confirms 
that, in fungi, the bioconcentrations are species-dependent and site-dependent. In fact, 
different fungal species have shown different responses to metal pollution. On the other 
hand, the content of elements in the soil depends on both physical characteristics (e.g., 
the grain of soil) and the impact human activities [55,56].

Future studies should include samples from different geographical/geological sites 
and other species of edible mushrooms. With growth in the consumption and demand 
of edible wild mushrooms, the analysis of mineral content in both mushrooms and 
soils can be an important tool in identifying the possible risks to human health.
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