New data on aphylloporphoroid fungi (Basidiomycota) in forest-steppe communities of the Lipetsk region, European Russia

Sergey Volobuev1*, Alexandra Arzhenenko2, Sergey Bolshakov1, Nataliya Shakhova3, Lyudmila Sarycheva4

1 Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia
2 Botany Chair, Biological Department, Saint Petersburg State University, Universitetskaya Embankment 7–9 Str., Petersburg 199034, Russia
3 Laboratory of Biochemistry of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia
4 Laboratory of Mycology, Galichya Gora Nature Reserve, Voronezh State University, Donskoye village, Zadonsky District, Lipetsk region 399240, Russia

* Corresponding author. Email: sergevolobuev@mail.ru

Abstract
The data on 150 species of aphylloporphoroid fungi from the Lipetsk region, Central Russian Upland, European Russia, are presented. The annotated species list based on the herbarium collections (LE, OHHI) and observations in the Galichya Gora Nature Reserve and in the Oleniy Nature Park, including 53 newly identified species in the Lipetsk region, is provided. The species Acanthophysellum minor was registered for the first time in Russia. Athelia nivea and Vuilleminia megalospora were observed only for the second time in the whole country. New data on ecology and distribution of species, such as Ceratobasidium corinigerum, Fibrodonia gossypina, Lindtneria panphyliensis, Peniophora lilacea, Phanerochaete aculeata, Phellinus rhamni, Sistotrema alboluteum, Vararia ochroleuca, and Xylodon tuberculatus, little-known in European Russia, are reported.

Keywords
Agaricomycetes; biodiversity; distribution; nemoral zone; forest-steppe

Introduction
The nontaxonomic group of basidiomycetes, the central focus of our research and historically named the aphylloporphoroid fungi, is characterized by nongilled hymenophores, which include several morphological types, such as polypores, hydnoids, corticioids, and clavarioids [1]. They have been confirmed to play a crucial role in dead wood degradation in forest ecosystems (the large number of known species are saproxylic), in addition to participating in trophic chains, mutualistic relationships, and the formation of microhabitats [2,3]. A number of species have been proven good indicators of old-growth forests and can be used as an evidence for establishing a protected area [4,5].

The forest-steppe zone of European Russia is a natural area that has not been sufficiently studied in respect of the species composition and ecological features of the aphylloporphoroid fungi. The Lipetsk region is an area of the forest-steppe zone, which has a rather long history of mycobiota studies primarily devoted to diversity and phenology of macromycetes [6–12]. Moreover, the purposeful research of aphylloporphoroid fungi has been recently initiated in this region [13]. To date, the mycobiota of the region

Digital signature
This PDF has been certified using digital signature with a trusted timestamp to assure its origin and integrity. A verification trust dialog appears on the PDF document when it is opened in a compatible PDF reader. Certificate properties provide further details such as certification time and a signing reason in case any alterations made to the final content. If the certificate is missing or invalid it is recommended to verify the article on the journal website.

Citation
includes 204 species of aphyllophoroid basidiomycetes, of which 14 species are listed in the regional Red data book [14].

The aim of our study was to widen knowledge on the species diversity and substrate preferences of aphyllophoroid basidiomycetes in forest-steppe communities of the Lipetsk region.

Because most of the territory of the Lipetsk region has been disturbed over the last century, natural forest-steppe communities have been preserved only as local fragments with nature conservation status. Most of these fragments are included in the Galichya Gora Nature Reserve, which is the core of a network of regional protected areas. It occupies an area of 2.3 km² and consists of six separate parts (Fig. 1).

The landscape of the territory is quite heterogeneous. It includes upland steppe and forest zones based on Devonian limestone outcrops (Fig. 2, Fig. 3), rugged by the Bystraya Sosna River valley, its feeders and gullies, and partially by the Don River valley. The reserve is covered with deciduous forest communities formed by Quercus robur, Tilia cordata, and Acer platanoides as dominant species with Betula pendula and Populus tremula as primary species, and undergrowth, which are typical for the Central Russian Upland [15].

Besides the Galichya Gora Nature Reserve, the Oleniy Nature Park was explored and should be mentioned as one of the largest and youngest protected areas in the Lipetsk region.

Material and methods

Our results are based on field trips to a number of protected areas in the Lipetsk region with forest-steppe vegetation in the Galichya Gora Nature Reserve and the Oleniy Nature Park in September 2016.

Material was collected from five areas according to the classical route method (Fig. 1).
The Morozova Gora protected area is located on the east side of the Don River valley and covers approximately 3 km². The major part of it is a plain (600 m at its widest), which becomes narrower and forms a valley while going from the north to the south. The vegetation comprises fragments of upland oak and birch forests, floodplain willow forests, meadows, and stipe-herb steppe fragments.

The Plyushchan protected area was originally a forest plot on the west side of the Don River valley, rugged by the twisting Plyushchan River from the south to the east, which surrounds the limestone-cliff valley sides. The vegetation cover mostly consists of oak and birch forests, floodplain willow forests, herb-rich steppe fragments, and pine plantings.

Two areas – the Voronov Kamen and the Vorgolskoye – lie on the right side of the Vorgol River. Its valley has a canyon-like appearance and limestone-cliff outcrops are quite usual along the riverside. The typical vegetation cover types for these areas are upland lime tree and oak forests and fragments of floodplain willow forests [10].

The Oleniy Nature Park is protected separately from the Galichya Gora Reserve and is located near the villages of Nikolskoye and Sukhodol in the Krasminskiy District of the Lipetsk region. It covers over 12 km² and most of the territory is occupied by agricultural land, interlaced with gullies and ravines, where different meadow and steppe associations have formed. In addition, ravine oak and birch forests, blackthorn bushes, and shelter belts are widely represented. Some admixtures of garden trees are also found [10].
Abbreviations of localities studied are as follows:
- MG1 – Morozova Gora protected area, 52°36.003' N, 38°55.527' E, postpyrogenic oak forest with maples and hazels;
- MG2 – Morozova Gora protected area, 52°36.102' N, 38°55.196' E, floodplain willow forest with Acer negundo;
- P1 – Plyushchan protected area, 52°49.561' N, 38°58.201' E, oak forest with birches;
- P2 – Plyushchan protected area, 52°49.695' N, 38°58.329' E, herb-rich maple forest with oaks and birches;
- P3 – Plyushchan protected area, 52°49.859' N, 38°59.100' E, larch stand;
- P4 – Plyushchan protected area, 52°49.709' N, 38°59.131' E, herb-rich oak forest;
- OP1 – Oleniy Nature Park, 52°57.832' N, 38°36.536' E, herb-rich oak forest with maples and birches;
- OP2 – Oleniy Nature Park, 52°57.959' N, 38°36.403' E, oak forest with maples and hazels;
- OP3 – Oleniy Nature Park, 52°58.020' N, 38°36.438' E, herb-rich oak forest;
- OP4 – Oleniy Nature Park, 52°58.201' N, 38°36.551' E, aspen forest with oaks and birches;
- OP5 – Oleniy Nature Park, 52°57.891' N, 38°36.571' E, herb-rich pine forest;
- OP6 – Oleniy Nature Park, 52°57.412' N, 38°36.496' E, dead floor maple forest with lime trees;
- OP7 – Oleniy Nature Park, 52°58.152' N, 38°36.495' E, aspen forest with hazels;
- VK – Voronov Kamen protected area, 52°34.145' N, 38°21.415' E, dead floor lime tree forest with aspens, oaks, and maples;
- VRG1 – Vorgolskoye protected area, 52°34.380' N, 38°22.059' E, dead floor lime tree forest with aspens, oaks, and maples;
- VRG2 – Vorgolskoye protected area, 52°34.362' N, 38°22.246' E, elm forest with willow and aspens.

The identification of basidiomata specimens was made using the LOMO Micmed-6 and the Carl Zeiss Axiolmager A1 light microscopes, and with the standard set of chemical solutions (5% KOH, Melzer’s reagent, Cotton Blue).
Results

For each species in the annotated list, references to specimens deposited in the herbarium of Komarov Botanical Institute, St. Petersburg (LE) and the mycological collection in the Khitrovo Herbarium of the Turgenev Oryol State University (OHHI) are provided. The list was organized according to up-to-date taxonomic data [16,17]; each note contained data on the substrate and the type of forest community. Species new to the Lipetsk region were marked with an asterisk. Names of taxa and authors were given according to Index Fungorum (March 27, 2018) [18].

Agaricales

Cyphellaceae
1. *Chondrostereum purpureum* (Pers.) Pouzar – MG1: on fallen log of *Quercus robur*.

Fistulinaceae
3. *Fistulina hepatica* (Schaeff.) With. – P1: on dead standing trunk of *Quercus robur*.

Niaceae

Physalacriaceae

Pterulaceae
7. *Radulomyces confluens* (Fr.) M. P. Christ. – OP2, P1, VK, VRG1: on fallen branches and logs of *Quercus robur* and *Populus tremula* (LE 313869, OHHI 1378, OHHI 1401, OHHI 1409).
8. *Radulomyces molaris* (Chaillet ex Fr.) M. P. Christ. – OP2, OP6, P1: on fallen branches and logs of *Acer platanoides* and *Quercus robur* and on dead standing trunk of *Corylus avellana* (LE 313882, LE 313966, OHHI 1380, OHHI 1394).

Schizophyllaceae
10. *Schizophyllum amplum* (Lév.) Nakasone – MG2: on fallen branch of *Salix* sp. (LE 313917).
11. *Schizophyllum commune* Fr. – P2: on dead standing trunk and fallen log of *Prunus padus* and *Quercus robur*.

Stephanosporaceae

Atheliales

Atheliaceae

Auriculariales

Auriculariaceae

17. *Auricularia mesenterica* (Dicks.) Pers. – OP6: on fallen branch of *Acer platanoides*.

Boletales

Coniophoraceae

18. *Coniophora puteana* (Schumach.) P. Karst. – MG1, OP1, VK: on fallen logs of *Acer platanoides*, *Betula pendula* and *Populus tremula* and on the stembase of *Quercus robur* (LE 314004, LE 314008, OHHI 1368, OHHI 1423).

Cantharellales

Botryobasidiaceae

20. *Botryobasidium laeve* (J. Erikss.) Parmasto – MG1, OP1, VK: on fallen branches of *Acer platanoides* and *Betula pendula* and on fallen burnt log of *Quercus robur* (LE 313878, LE 313879, LE 313957, OHHI 1342, OHHI 1351, OHHI 1391, OHHI 1403).

Ceratobasidiaceae

Hydnaceae

24. *Sistotrema alboluteum* (Bourdot & Galzin) Bondartsev & Singer – VRG1: on fallen log of *Quercus robur* on forest floor (LE 313914).

Corticiaceae

Corticiaceae

Punctulariaceae

Vuilleminiaeaceae
32. *Vuilleminia comedens* (Nees) Maire – P2, P4: on fallen log of *Betula pendula* and on dead standing trunk of *Corylus avellana* (LE 313927, OHHI 1398).
33. *Vuilleminia coryli* Boidin, Lanq. & Gilles – OP1: on fallen branches of *Betula pendula* and *Quercus robur* (LE 313870, OHHI 1339).
34. *Vuilleminia megaspora* Bres. – P1: on fallen branch of *Quercus robur* (LE 313963).

Gomphales

Lentariaceae
35. *Hydnocristella himantia* (Schwein.) R. H. Petersen – P4, VRG1: on dead standing trunk and fallen log of *Salix* sp. and on fallen log of *Quercus robur* (LE 313951, LE 313954, OHHI 1362).

Hymenochaetales

Hymenochaetaceae
36. *Fomitiporia punctata* (P. Karst.) Murrill – P4: on fallen log of *Salix* sp. (LE 314002).
37. *Fomitiporia robusta* (P. Karst.) Fiasson & Niemelä – P4: on dead standing trunk of *Quercus robur*.
43. *Phylloporia ribis* (Schumach.) Ryvarden – P3: on living stem of *Euonymus verrucosus* (LE 314015).
44. *Trichaptum biforme* (Fr.) Ryvarden – P2: on fallen log of *Betula pendula*.

Oxyporaceae
45. *Oxyporus obducens* (Pers.) Donk – P4, VRG2: on fallen logs of *Populus tremula* and *Salix* sp. (LE 313981, LE 313982).
46. *Oxyporus populinus* (Schumach.) Donk – P3, P4, OP6: on fallen logs of *Populus tremula* and *Salix* sp. (LE 313990, LE 313993, OHHI 1363).

Rickenellaceae
47. *Peniophorella praetermissa* (P. Karst.) J. Erikss. & Å. Strid – P3, VRG1: on fallen branches and logs of *Quercus robur* and *Larix* sp. (LE 313994, LE 314000).
48. *Peniophorella pubera* (Fr.) P. Karst. – OP1, OP6, P1, P2, VK: on fallen logs, branches and fallen bark of *Acer platanoides*, *Betula pendula*, *Corylus avellana*, *Quercus robur* and on dead basidiome of *Fomes fomentarius* (LE 313889, LE 313891, LE 313997, LE 313998, LE 313999, OHHI 1382, OHHI 1383).

Schizoporaceae
49. *Hyphodontia arguta* (Fr.) J. Erikss. – OP2, P4: on fallen log and branches of *Acer platanoides* and *Tilia cordata* (LE 313860, OHHI 1399).
52. *Lyomyces erastii* (Saaren. & Kotir.) Hjortstam & Ryvarden – MG2, P2: on fallen branch of *Betula pendula* and on dead branch of *Acer negundo* (LE 313938, LE 313941).

53. *Lyomyces sambuci* (Pers.) P. Karst. – MG2, OP6, VK, VRG1: on fallen branches and logs, on dead standing trunk of *Acer platanoides*, *Quercus robur*, *Prunus padus*, *Salix* sp. and on dead Apiaceae grass (LE 314018, LE 314019, LE 314020, LE 314021, OHHI 1387, OHHI 1392, OHHI 1396, OHHI 1410, OHHI 1425).

55. *Xylodon paradoxus* (Schrad.) Chevall. – P1: on fallen branch of *Quercus robur* (LE 313989).

58. *Xylodon raduloides* Riebesehl & Langer – MG2, OP1: on fallen log and branch of *Quercus robur* and *Salix* sp. (LE 313896, LE 314013).

60. *Xylodon tuberculatus* (Kotir. & Saaren.) Hjortstam – P4, OP1: on fallen logs and branches of *Betula pendula*, *Quercus robur*, and *Salix* sp. (LE 313905, LE 314039, OHHI 1392).

64. *Postia lactea* (Fr.) P. Karst. – OP1, VK: on fallen branches and logs of *Acer platanoides*, *Corylus avellana*, and *Salix* sp. (LE 313877, LE 314030, LE 314031, OHHI 1396, OHHI 1397).

66. *Skeletocutis nivea* (Jungh.) Jean Keller – OP1, OP6, VK: on fallen branches of *Prunus padus*, *Quercus robur* and on dead standing trunk of *Acer platanoides* (LE 313884, LE 313978, OHHI 1419).

67. *Antrodia minuta* Spirin – OP2, VRG1: on fallen logs of *Acer platanoides* and *Quercus robur* (LE 313881, LE 313965).

68. *Antrodia simosa* (Fr.) P. Karst. – OP4: on fallen log of *Acer platanoides* (LE 313902).

69. *Antrodia xantha* (Fr.) Ryvarden – OP1: on fallen log of *Acer platanoides* (LE 314047).

70. *Daedalea quercina* (L.) Pers. – MG1: on fallen log of *Quercus robur* (LE 314006, OHHI 1350).

71. *Fomitopsis betulina* (Bull.) B. K. Cui, M. L. Han & Y. C. Dai – P2: on fallen log of *Betula pendula*.

72. *Fomitopsis pinicola* (Sw.) P. Karst. – VRG1: on fallen log and dead standing trunk of *Quercus robur* and *Tilia cordata*.

73. *Hyphoderma mutatum* (Peck) Donk – OP6, P1, VRG1: on fallen logs and branches of *Acer platanoides* and *Quercus robur* and on dead standing trunk of *Populus tremula* (LE 313972, LE 313974, LE 313977, OHHI 1397, OHHI 1404).

75. *Hyphoderma setigerum* (Fr.) Donk – MG2, OP1, OP2, OP4, P1, P2: on fallen logs and branches of *Acer platanoides*, *Betula pendula*, *Quercus robur*, and *Corylus avellana* and on dead standing trunk of *Populus tremula* (LE 313899, LE 313901, LE 314023, LE 314024, OHHI 1345, OHHI 1346, OHHI 1347, OHHI 1377, OHHI 1380, OHHI 1385).

Irpicaceae

77. *Byssomerulius corium* (Pers.) Parmasto – MG2, VRG1: on fallen logs and dead branches of *Acer negundo* and *Salix* sp. (LE 313932, LE 313933, OHHI 1381, OHHI 1388).

79. *Ceriporia purpurea* (Fr.) Donk – OP2, P4: on fallen logs of *Quercus robur* (LE 313893, OHHI 1359, OHHI 1391).

83. *Gloeoporus dichrous* (Fr.) Bres. – OP6: on fallen branch of *Corylus avellana*.

84. *Gloeoporus pannocinctus* (Romell) J. Erikss. – P1, VRG2: on fallen log of *Populus tremula* and on dead basidiome of *Fomes fomentarius* (LE 313988, LE 313992).

85. *Irpex lacteus* (Fr.) Fr. – VRG1: on fallen branch of *Fraxinus excelsior* (LE 313956).

Meruliaceae

86. *Phlebia radiata* Fr. – OP7, P2, VK: on fallen logs of *Acer platanoides*, *Betula pendula*, and *Populus tremula* and on living stem of *Corylus avellana* (LE 313894, LE 314010, OHHI 1386, OHHI 1402).

88. *Phlebia tremellosa* (Schrad.) Nakasone & Burds. – P2: on fallen log of *Betula pendula* (LE 314034).

Phanerochaetaceae

89. *Bjerkandera adusta* (Willd.) P. Karst. – MG1: on the stembase of *Betula pendula*.

90. *Bjerkandera fumosa* (Willd.) P. Karst. – MG2, VRG1: on fallen log of *Populus tremula* and on living tree of *Acer negundo* (LE 313949).

92. *Phanerochaete aculeata* Hallenb. – OP1, OP4: on dead basidiomes of *Fomes fomentarius* on dead standing stem of *Betula pendula* (LE 313857, LE 313861).

94. *Phanerochaete laevis* (Fr.) J. Erikss. & Ryvarden – P2, P3, VRG1: on fallen logs and branches of *Quercus robur* and *Larix* sp. (LE 313958, LE 313960, OHHI 1384).

98. *Porostereum spadiceum* (Pers.) Hjortstam & Ryvarden – MG1, P2: on fallen burnt log of *Quercus robur* and on fallen bark of deciduous tree (LE 314025, LE 314030).

Podoscyphaceae

Polyporaceae

100. *Daedaleopsis confragosa* (Bolton) J. Schröt. – MG2, P2: on fallen logs of *Betula pendula* and *Salix* sp. (LE 313929, OHHI 1382, OHHI 1387).

103. *Fomes fomentarius* (L.) Fr. – MG2, OP1, OP4, P1, P2, VRG1: on fallen logs of *Acer platanoides* and *Betula pendula*.

Steccherinaceae

111. *Antrodiella romellii* (Donk) Niemelä – VRG1: on fallen branch of *Quercus robur* (LE 314016).

113. *Metuloidea fragrans* (A. David & Tortic) Miettinen – MG1, OP1, VRG1: on fallen branches and logs and on living stem of *Betula pendula*, *Corylus avellana*, and *Prunus padus* (LE 313946, LE 313948, OHHI 1348, OHHI 1369, OHHI 1372).

116. *Steccherinum fimbriatum* (Pers.) J. Erikss. – OP1, P1, VK, VRG1: on fallen branches of *Acer platanoides* and *Quercus robur* (LE 313944, LE 313947, OHHI 1370, OHHI 1375).

Xenasmataceae

119. *Phlebiella vaga* (Fr.) P. Karst. – OP2, VK: on fallen bark and log of *Acer platanoides* and *Quercus robur* (LE 313907, OHHI 1399).

Russulales

Hericiaceae

120. *Hericium coralloides* (Scop.) Pers. – MG1: on fallen log of *Betula pendula* (LE 313931, OHHI 1349).
121. *Laxitextum bicolor* (Pers.) Lentz – P4, VRG1: on dead standing trunk of *Populus tremula* and on fallen log of *Quercus robur* (LE 313921).

Peniophoraceae

122. *Peniophora cinerea* (Pers.) Cooke – OP2, P4, VRG1: on fallen branches of *Acer platanoides* and *Quercus robur* (LE 313867, OHHI 1376, OHHI 1408).
125. *Peniophora nuda* (Fr.) Bres. – P1, P2: on fallen and dead branches of *Acer platanoides* and *Prunus padus* (LE 313979, LE 313980).
127. *Peniophora violaceolivida* (Sommerf.) Massee – MG2, OP1: on dead and fallen branches of *Acer negundo* and *Betula pendula* (LE 313908, LE 314045, OHHI 1337).

Stereaceae

130. *Stereum gausapatum* (Fr.) Fr. – MG1: on fallen log of *Quercus robur*.
131. *Stereum hirsutum* (Willd.) Pers. – MG1, P1: on fallen logs and branches of *Quercus robur* (LE 313952, OHHI 1354).
132. *Stereum subtomentosum* Pouzar – MG1, VRG1: on fallen log of *Quercus robur* (LE 314029).

Sebacinales

Sebacinaeae

Thelephorales

Thelephoraceae

134. *Tomentella badia* (Link) Stalpers – OP1: on fallen branches of *Betula pendula* and *Corylus avellana* (LE 313862, LE 313910).
139. *Tomentella punicea* (Alb. & Schwein.) J. Schröt. – OP1, P4, VRG1: on fallen branches and burnt logs of *Quercus robur* (LE 313892, LE 314003, OHHI 1413, OHHI 1416, OHHI 1418).
141. *Tomentella stuposa* (Link) Stalpers – P1, VRG1: on fallen branch and log of *Quercus robur* (LE 314028, OHHI 1424).
142. *Tomentella sublilacina* (Ellis & Holw.) Wakef. – OP2, P1, P4: on fallen branches and log of *Acer platanoides*, *Quercus robur*, and *Corylus avellana* (LE 313904, LE 314032, OHHI 1395).
143. *Tomentella umbrinospora* M. J. Larsen – P1, VRG1: on fallen burnt logs of *Betula pendula* and *Quercus robur* (LE 314040, LE 314044).

Trechisporales

Hydnodontaceae

146. *Trechispora cohaerens* (Schwein.) Jülich & Stalpers – OP1, P2: on fallen logs of *Betula pendula* and *Quercus robur* and on dead basidiome of *Fomes fomentarius* (LE 313926, LE 313928, OHHI 1389).

Discussion

A total of 150 species of aphyllophoroid fungi were listed for the Lipetsk region, including 53 species registered for the region for the first time and *Acanthophysellum minor* as a new species in Russia. According to Bernicchia and Gorjón [19], *A. minor* is also known from the Mediterranean Basin (Spain, Portugal), Central Europe (Croatia), and the Caucasus (Iran).

Among the species new to the region, attention was particularly attracted by *Athelia nivea* and *Vuilleminia megalospora*, which were observed only for the second time in Russia. Both species were known prior to this study only from the Leningrad region [20,21]. The species *Athelia nivea* is generally considered a member the *A. epiphylla* species complex, but is distinguished from other species of the complex (e.g., *A. epiphylla* s. str., *A. ovata*) by frequent clamps on subicular hyphae. The known distribution of *A. nivea* in Europe covers the Czech Republic, Germany, Slovakia, Sweden, and the United Kingdom [22]. Our finding of *Vuilleminia megalospora* on *Quercus robur* from the forest-steppe zone of European Russia is congruent with available data on occurrences and ecological requirements of the species being found on hardwoods like *Quercus* and *Crataegus* in Croatia, France, Greece, Italy, Macedonia, Slovakia, Spain, and Iran [19,23]. Two other species have been found for the second time within the European part of Russia, in particular, *Fibrodontia gossypina*, known from the Komi Republic [24], and *Sistotrema alboluteum*, reported from the Nizhny Novgorod region [25]. Both species have a widespread but scattered distribution in Europe [19,26]. *Ceratobasidium cornigerum*, *Peniophora lilacea*, *Xylodon tuberculatus* are also little known in the European Russia, and each species has been recorded from no more than three localities [27].

Other remarkable records of aphyllophoroid fungi revealed by this study were *Phellinus rhamni* and *Vararia ochroleuca*. *Phellinus rhamni* found on dry standing stems of *Frangula alnus* was registered for the second time in the Central Russian Upland after collection from the Bryansk Region [28]. This is a diagnostic species of forest communities in Central and Eastern Europe associated primarily with some members of the family Rhamnaceae. The recording of *Vararia ochroleuca* is also the second on the territory of the Central Russian Upland, where the species was collected earlier from the Oryol region [29].

The peculiarity of the biota of the revealed aphyllophoroid fungi was characterized by the findings of some species exclusively associated with broad-leaved trees and...
distributed in nemoral zone. Such species as *Lindtneria panphyliensis* and *Phanerochaete aculeata* listed particularly for the Oleniy Nature Park [13], were known previously in European Russia only from the forest-steppe communities of the Oryol region [30].

The maximum species richness was noted for the genera *Hyphodontia* s. l. (including *Kneiffiella*, *Lyomyces*, *Xylodon*) (12 species) and *Tomentella* (10 species).

The highest number of aphyllophoroid fungi species was found on the woods of *Quercus robur*, *Acer platanoides*, and *Betula pendula* (Fig. 4). Substrate units occupied by several species of fungi were revealed simultaneously not only among large-scale forest-forming trees, but also among less frequently found substrates, for instance, dead basidiomata of polypores. In total, five species (*Gloeoporus pannocinctus*, *Peniophorella pubera*, *Phanerochaete aculeata*, *Sistotrema brinkmannii*, *Trechispora cohaerens*) were collected from dead basidiomata of *Fomes fomentarius*.

New localities for three species of aphyllophoroid fungi protected in the Lipetsk region were registered during the mycological survey: *Hericium coralloides*, which has an official conservation status in the Lipetsk region [14], as well as *Donkia pulcherrima*, and *Metuloidea fragrans* are included to the monitoring list and recommended for observational studies on their distribution and ecological features in the region.

Acknowledgments

The authors are grateful to Oleg Shchepin for linguistic corrections.

References

25. Spirin WA, Zmitrovich IV. Notes on some rare polypores, found in Russia 3. Genera

29. Kotkova VM, Bondartseva MA, Volobuev SV. Aphyllophoraceous fungi of the National Park "Orlovskoe Poles'e" (Orel region). Mikol Fitopatol. 2011;45(1):35–47.