Boron Facilitates Rice Growth, Development, and Related Attributes Under Saline Soil Conditions

Md. Rasel Uddin, Mohammed Nuruzzaman, Preangka Saha Briste, Md. Morshedul Islam, Ashik Karim Bhuiyan, Md. Istiak Hossain Joy, Shakil Ahmed, Amena Khatun

Abstract


Salinity is a severe environmental threat causing low productivity in field crops. Rice is a staple crop of the world whose yield and quality is highly affected by the salt content in the root zone. Nutrient management, however, is a key factor that can be used to boost rice production in saline soils. Boron (B), a micronutrient with diverse functions, plays a significant role in rice yield. However, little is known about the effects of B under saline conditions on the yield of rice components. ‘Swarna,’ is a local and salt-sensitive rice variety from Bangladesh. A field experiment was conducted in salt-treated soils to assess the possible functions of B for the improvement of ‘Swarna’ yield. The current study showed that B applications substantially improved the length and weight of panicles, number of tillers and grains, seed weight as well as the yield of grain and straw, indicating its role in rice production in saline environments.

Keywords


rice ‘Swarna’; micronutrient; saline soil; day after transplanting (DAT)

Full Text:

PDF XML (JATS)

References


Atique-ur-Rehman, Farooq, M., Rashid, A., Nadeem, F., Stuerz, S., Asch, F., Bell, R. W., & Siddique, K. H. M. (2018). Boron nutrition of rice in different production systems. A review. Agronomy for Sustainable Development, 38, Article 25. https://doi.org/10.1007/s13593-018-0504-8

Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1), Article 1757. https://doi.org/10.5586/aa.1757

Bhattarai, S. P., & Midmore, D. J. (2009). Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol. Journal of Integrative Plant Biology, 51(7), 675–688. https://doi.org/10.1111/j.1744-7909.2009.00837.x

Ding, J.-L., Wu, M.-C., Liu, H.-X., & Li, Z.-G. (2012). Study on the soil salinization monitoring based on synthetical hyperspectral index. Spectroscopy and Spectral Analysis, 32(7), 1918–1922. https://doi.org/10.3964/j.issn.1000-0593(2012)07-1918-05

Farghaly, F. A., Radi, A. A., Abdel-Wahab, D. A., & Hamada, A. M. (2016). Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus. Acta Biologica Hungarica, 67(2), 184–194. https://doi.org/10.1556/018.67.2016.2.6

Farhangi-Abriz, S., & Nikpour-Rashidabad, N. (2017). Effect of lignite on alleviation of salt toxicity in soybean (Glycine max L.) plants. Plant Physiology and Biochemistry, 120, 186–193. https://doi.org/10.1016/j.plaphy.2017.10.007

Feizi, M., Aghakhani, A., Mostafazadeh-Frad, B., & Heidarpour, M. (2007). Salt tolerance of wheat according to soil and drainage water salinity. Pakistan Journal of Biological Sciences, 10, 2824–2830. https://doi.org/10.3923/pjbs.2007.2824.2830

Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3), 327–331. https://doi.org/10.1093/aob/mcu267

Guo, C., Luo, C., Guo, L., Li, M., Guo, X., Zhang, Y., Wang, L., & Chen, L. (2016). OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Journal of Integrative Plant Biology, 58(5), 492–502. https://doi.org/10.1111/jipb.12376

Hassanein, A., Esmail, N., & Hashem, H. (2020). Sodium nitroprusside mitigates the inhibitory effect of salt and heavy metal stress on lupine yield and downregulates antioxidant enzyme activities. Acta Agrobotanica, 73(3), Article 7336. https://doi.org/10.5586/aa.7336

Huang, B., Xin, J., Dai, H., & Zhou, W. (2017). Effects of interaction between cadmium (Cd) and selenium (Se) on grain yield and Cd and Se accumulation in a hybrid rice (Oryza sativa) system. Journal of Agricultural and Food Chemistry, 65(43), 9537–9546. https://doi.org/10.1021/acs.jafc.7b03316

Hussain, M., Ahmad, S., Hussain, S., Lal, R., Ul-Allah, S., & Nawaz, A. (2018). Rice in saline soils: Physiology, biochemistry, genetics, and management. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 148, pp. 231–287). Academic Press. https://doi.org/10.1016/bs.agron.2017.11.002

Hussain, M., Khan, M. A., Khan, M. B., Farooq, M., & Farooq, S. (2012). Boron application improves growth, yield and net economic return of rice. Rice Science, 19, 259–262. https://doi.org/10.1016/S1672-6308(12)60049-3

Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. In S. Hussain (Ed.), Climate change and agriculture. IntechOpen. https://doi.org/10.5772/intechopen.87982

Kalita, J., & Tanti, B. (2020). Screening of some traditional rice cultivars of Assam, India, for their response to arsenic-induced abiotic stress. Acta Agrobotanica, 73(1), Article 7315. https://doi.org/10.5586/aa.7315

Kumar, A., Sen, A., & Kumar, R. (2016). Micronutrient fortification in crop to enhance growth, yield and quality of aromatic rice. Journal of Environmental Biology, 37(5), 973–977.

Kumar, K., Manigundan, K., & Amaresan, N. (2017). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 57(2), 141–150. https://doi.org/10.1002/jobm.201600369

Kumar, V., Singh, A., Mithra, S. A., Krishnamurthy, S. L., Parida, S. K., Jain, S., Tiwari, K. K., Kumar, P., Rao, A. R., Sharma, S. K., Khurana, J. P., Singh, N. K., & Mohapatra, T. (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research, 22(2), 133–145. https://doi.org/10.1093/dnares/dsu046

Mackill, D. J. (2007). Molecular markers and marker-assisted selection in rice. In R. K. Varshney, & R. Tuberosa (Eds.), Genomics-assisted crop improvement (pp. 147–168). Springer. https://doi.org/10.1007/978-1-4020-6297-1_7

Martinez-Ballesta, M. d. C., Bastías, E., Zhu, C., Schäffner, A. R., González-Moro, B., González-Murua, C., & Carvajal, M. (2008). Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiologia Plantarum, 132(4), 479–490. https://doi.org/10.1111/j.1399-3054.2007.01045.x

Matijevic, L., Romic, D., & Romic, M. (2014). Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants. Environmental Geochemistry and Health, 36(5), 883–896. https://doi.org/10.1007/s10653-014-9606-7

Moraes, G. P., Benitez, L. C., do Amaral, M. N., Vighi, I. L., Auler, P. A., da Maia, L. C., Bianchi, V. J., & Braga, E. J. B. (2015). Expression of LTP genes in response to saline stress in rice seedlings. Genetics and Molecular Research, 14(3), 8294–8305. https://doi.org/10.4238/2015.July.27.18

Mosa, K. A., Kumar, K., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2016). Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Scientific Reports, 6, Article 21640. https://doi.org/10.1038/srep21640

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – What is the cost? New Phytologist, 208(3), 668–673. https://doi.org/10.1111/nph.13519

Najib, S., Fadili, A., Mehdi, K., Riss, J., & Makan, A. (2017). Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. Journal of Contaminant Hydrology, 198, 24–36. https://doi.org/10.1016/j.jconhyd.2017.01.003

Nam, K.-H., Kim, Y.-J., Moon, Y. S., Pack, I.-S., & Kim, C.-G. (2017). Salinity affects metabolomic profiles of different trophic levels in a food chain. Science of the Total Environment, 599, 198–206. https://doi.org/10.1016/j.scitotenv.2017.05.003

Nieves-Cordones, M., Martínez, V., Benito, B., & Rubio, F. (2016). Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Frontiers in Plant Science, 7, Article 992. https://doi.org/10.3389/fpls.2016.00992

Paul, D., & Lade, H. (2014). Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agronomy for Sustainable Development, 34(4), 737–752. https://doi.org/10.1007/s13593-014-0233-6

Pires, I. S., Negrão, S., Oliveira, M. M., & Purugganan, M. D. (2015). Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum, 155(1), 43–54. https://doi.org/10.1111/ppl.12356

Pitman, M. G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In A. Läuchli, & U. Lüttge (Eds.), Salinity: Environment – plants – molecules (pp. 3–20). Springer. https://doi.org/10.1007/0-306-48155-3_1

Radanielson, A. M., Angeles, O., Li, T., Ismail, A. M., & Gaydon, D. S. (2018). Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 220, 46–56. https://doi.org/10.1016/j.fcr.2017.05.001

Rerkasem, B., Netsangtip, R., Lordkaew, S., & Cheng, C. (1993). Grain set failure in boron deficient wheat. Plant and Soil, 155(1), 309–312. https://doi.org/10.1007/BF00025044

Rouached, H., & Tran, L. S. P. (2015). Regulation of plant mineral nutrition: Transport, sensing and signaling. International Journal of Molecular Sciences, 16(12), 29717–29719. https://doi.org/10.3390/ijms161226198

Shahid, M., Nayak, A. K., Tripathi, R., Katara, J. L., Bihari, P., Lal, B., & Gautam, P. (2018). Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages. International Journal of Biometeorology, 62(8), 1375–1387. https://doi.org/10.1007/s00484-018-1537-z

Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), Article 1856. https://doi.org/10.3390/ijms19071856

Shorrocks, V. (1997). The occurrence and correction of boron deficiency. Plant and Soil, 193(1–2), 121–148. https://doi.org/10.1023/A:1004216126069

Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl− ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189–2203. https://doi.org/10.1093/jxb/erq422

Uluisik, I., Karakaya, H. C., & Koc, A. (2018). Corrigendum to “The importance of boron in biological systems” [J. Trace Elem. Med. Biol. 45 (2018) 156–162]. Journal of Trace Elements in Medicine and Biology, 55, 215. https://doi.org/10.1016/j.jtemb.2018.04.001

Upadhyay, S. K., & Singh, D. P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17(1), 288–293. https://doi.org/10.1111/plb.12173

Vatansever, R., Ozyigit, I. I., & Filiz, E. (2017). Essential and beneficial trace elements in plants, and their transport in roots: A review. Applied Biochemistry and Biotechnology, 181(1), 464–482. https://doi.org/10.1007/s12010-016-2224-3

Ventura, Y., Eshel, A., Pasternak, D., & Sagi, M. (2015). The development of halophyte-based agriculture: Past and present. Annals of Botany, 115(3), 529–540. https://doi.org/10.1093/aob/mcu173

Xie, Z., Song, R., Shao, H., Song, F., Xu, H., & Lu, Y. (2015). Silicon improves maize photosynthesis in saline-alkaline soils. The Scientific World Journal, 2015, Article 245072. https://doi.org/10.1155/2015/245072

Zamani, H., Arvin, M. J., Aboutalebi Jahromi, A., Abdossi, V., & Mohammadi Torkashvand, A. (2019). The effect of methyl jasmonate and sodium silicate on the mineral composition of Solanum lycopersicum L. grown under salinity stress. Acta Agrobotanica, 72(3), Article 1782. https://doi.org/10.5586/aa.1782

Zhao, Q., Li, J., Dai, Z., Ma, C., Sun, H., & Liu, C. (2019). Boron tolerance and accumulation potential of four salt-tolerant plant species. Scientific Reports, 9, Article 6260. https://doi.org/10.1038/s41598-019-42626-8

Zhu, Y., Sun, G.-X., Chen, Z., Hu, Y., & Zheng, R.-L. (2018). Effects of boron treatment on arsenic uptake and efflux in rice seedlings. Journal of Environment Science, 39(7), 3400–3408. https://doi.org/10.13227/j.hjkx.201712177




DOI: https://doi.org/10.5586/aa.743

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society