Drought Response of Rice in Northeastern Thailand Assessed via Fourier Transform Infrared Spectroscopy

Piyaporn Phansak, Supatcharee Siriwong, Nantawan Kanawapee, Kanjana Thumanu, Wuttichai Gunnula, Natthiya Buensanteai

Abstract


Drought isa major constraint in many rainfed areas and affects rice yield. We aimed to characterize the physiological changes in rice in response to drought using Fourier transform infrared (FTIR) spectroscopy. Eighty rice landrace seedlings were subjected to drought in the greenhouse using a PEG 6000. Physiological parameters, including total chlorophyll content, relative water content, electrolyte leakage, and biochemical changes were evaluated. Based on the FTIR results, the landraces were divided into three main groups: tolerant, moderately tolerant, and susceptible. Principal component analysis revealed spectral differences between the control and drought stress treatment groups. Lipid, pectin, and lignin content increased after drought stress. The biochemical components of plants at different drought tolerance levels were also compared. The lipid (CH2 and CH3), lignin (C=C), pectin (C=O), and protein (C=O, N–H) contents were the highest in the drought-tolerant cultivars, followed by the moderately tolerant and susceptible cultivars, respectively. Cultivar 17 and 49 were the most tolerant, and the functional groups were identified and characterized using FTIR. Overall, these results will be useful in selecting parental cultivars for rice breeding programs.

Keywords


rice; drought stress; drought tolerance; physiological characteristics; FTIR spectroscopy; biochemical changes

Full Text:

PDF XML (JATS)

References


Abdelkader, A. F., Hassanein, R. A., Abo-Aly, M. M., Attia, M. S., & Bakir, E. M. (2010). Screening the bio-safety of wheat produced from pretreated grains to enhance tolerance against drought using physiological and spectroscopic methods. Food and Chemical Toxicology, 48, 1827–1835. https://doi.org/10.1016/j.fct.2010.04.015

Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8, Article 4615. https://doi.org/10.1038/s41598-018-21441-7

Afifi, A. A., & Youssef, R. A. (2013). Fourier transform infrared spectometry study on early stage of salt stress in jojoba plant. Life Science Journal, 10(4), 1973–1981.

Amini, H., Arzani, A., & Karami, M. (2014). Effect of water deficiency on seed quality and physiological traits of different safflower genotypes. Turkish Journal of Biology, 38, 271–282. https://doi.org/10.3906/biy-1308-22

Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Science, 14, 4885–4911. https://doi.org/10.3390/ijms14034885

Aron, D. (1949). Copper enzymes in isolated chloroplasts. Plant Physiology, 24, 1–15. https://doi.org/10.1104/pp.24.1.1

Asaf, S., Khan, A. L., Khan, M. A., Imran, Q. M., Yun, B. W., & Lee, I. J. (2017). Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiological Research, 205, 135–145. https://doi.org/10.1016/j.micres.2017.08.009

Barbin, D. F., Felicio, A. L. S. M., Sun, D. W., Nixdorf, S. L., & Hirooka, E. Y. (2014). Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Research International, 61, 23–32. https://doi.org/10.1016/j.foodres.2014.01.005

Bayoumi, T. Y., Manal, H. E., & Metwali, E. M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7, 2341–2352. https://doi.org/10.1016/j.foodres.2014.01.005

Buensanteai, N., Thumanu, K., Sompong, M., Athinuwat, D., & Prathuangwong, S. (2012). The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, Bacillus subtilis. African Journal of Microbiology Research, 6, 603–610.

Carpita, N., Sabularse, D., Monfezinos, D., & Delmer, D. P. (1979). Determination of the pore size of cell walls of living plant cells. Science, 205, 1144–1147. https://doi.org/10.1126/science.205.4411.1144

Cha-um, S., Yooyongwech, S., & Supaibulwatana, K. (2010). Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes. Pakistan Journal of Botany, 42(5), 3387–3398.

Chukwuma, C. O., Matthew, A. E. M., Habib-ur-Rehman, A., & Giles, N. J. (2017). Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates. African Journal of Biotechnology, 16, 1061–1066. https://doi.org/10.5897/AJB2017.15918

Chutia, J., & Borah, S. P. (2012). Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India II. Protein and proline status in seedlings under PEG induced water stress. American Journal of Plant Sciences, 3, 971–980. https://doi.org/10.4236/ajps.2012.37115

De Luca, M., Terouzi, W., Ioele, G., Kzaiber, F., Oussama, A., Oliverio, F., Tauler, R., & Ragno, G. (2011). Derivative FTIR spectroscopy for cluster analysis and classification of Morocco olive oils. Food Chemistry, 124, 1113–1118. https://doi.org/10.1016/j.foodchem.2010.07.010

Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

Fan, C. H., Chang, M., Zhang, Y. C., & Gao, Y. L. (2016). Ftir analysis of secondary abiotic stress response of Calendula officinalis seedlings to lead and cadmium in multi-contaminated loess. Guang Pu Xue Yu Guang Pu Fen Xi, 36(8), 2442–2446.

Farooq, M., Basra, S. M. A., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195, 237–246. https://doi.org/10.1111/j.1439-037X.2009.00365.x

Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A., & Khaliq, A. (2008). Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 194, 325–333. https://doi.org/10.1111/j.1439-037X.2008.00323.x

Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10, 1–6. https://doi.org/10.3126/ijls.v10i1.14509

Felkner, J., Tazhibayeva, K., & Townsend, R. (2009). Impact of climate change on rice production in Thailand. American Economic Review, 99, 205–210. https://doi.org/10.1257/aer.99.2.205

Ferrari-Iliou, R., Pham-Thi, A. T., & Vieira da Silva, J. (1984). Effects of water stress on the lipid and fatty acid composition of cotton (Gossypium hirsutum) chloroplasts. Physiologia Plantarum, 62, 219–224. https://doi.org/10.1111/j.1399-3054.1984.tb00374.x

Fraser, T. E., Silk, W. K., & Rost, T. L. (1990). Effects of low water potential on cortical cell length in growing regions of maize roots. Plant Physiology, 93, 648–651. https://doi.org/10.1104/pp.93.2.648

Ghaffari, A., Gharechahi, J., Nakhoda, B., & Salekdeh, G. H. (2014). Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology, 171, 31–44. https://doi.org/10.1016/j.jplph.2013.07.014

Gholizadeh, H., Naserian, A. A., Xin, H., Valizadeh, R., Tahmasbi, A. M., & Yu, P. (2014). Detecting carbohydrate molecular structural makeup in different types of cereal grains and different cultivars within each type of grain grown in semi-arid area using FTIR spectroscopy with uni- and multi-variate molecular spectral analyses. Animal Feed Science and Technology, 194, 136–144. https://doi.org/10.1016/j.anifeedsci.2014.05.007

Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Becker, M., Varmuza, K., Liebner, F., Schuhmacher, R., & Forneck, A. (2015). Severe drought stress is affecting selected primary metabolites. polyphenols. and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiology and Biochemistry, 88, 17–26. https://doi.org/10.1016/j.plaphy.2015.01.004

Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005

Hellal, F. A., El-Shabrawi, H. M., Abd El-Hady, M., Khatab, I. A., El-Sayed, S. A. A., & Abdelly, C. (2018). Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology, 16, 203–212. https://doi.org/10.1016/j.jgeb.2017.10.009

Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, Article 393. https://doi.org/10.3389/fpls.2018.00393

Inuwa, R. S., & Muhammad, Y. Y. (2018). Drought affects protein and phenolic content in bambara groundnut (Vigna subterranea L. Verdc.). Bayero Journal of Pure and Applied Sciences, 10, 345–349. https://doi.org/10.4314/bajopas.v10i1.69S

Jongdee, B., Fukai, S., Cooper, M., & Pantuwan, G. (1999). Screening for drought resistance in rainfed lowland rice. Field Crops Research, 64, 61–74. https://doi.org/10.1016/S0378-4290(99)00051-9

Jongdee, B., Pantuwan, G., Fukai, S., & Fischer, K. (2006). Improving drought tolerance in rainfed lowland rice: An example from Thailand. Agricultural Water Management, 80, 225–240. https://doi.org/10.1016/j.agwat.2005.07.015

Kanawapee, N., Sanitchon, J., Lontom, W., & Theerakulpisut, P. (2012). Evaluation of salt tolerance at the seedling stage in rice genotypes by growth performance, ion accumulation, proline and chlorophyll content. Plant and Soil, 358(1–2), 235–249. https://doi.org/10.1007/s11104-012-1179-6

Khan, F., Upreti, P., Singh, R., Shukla, P. K., & Shirke, P. A. (2017). Physiological performance of two contrasting rice varieties under water stress. Physiology and Molecular Biology of Plants, 23(1), 85–97. https://doi.org/10.1007/s12298-016-0399-2

Kumar, J. K., & Devi Prasad, A. G. (2011). Identification and comparison of biomolecules in medicinal plants of Tephrosia tinctoria and Atylosia albicans by using FTIR. Romanian Journal of Biophysics, 21, 63–71.

Kumar, S., Dwivedi, S. K., Singh, S. S., Jha, S. K., Lekshmy, S., Elanchezhian, R., Singh, O. N., & Bhati, B. P. (2014). Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. SABRAO Journal, 46(2), 217–230.

Kumar, S., Lahlali, R., Liu, X., & Karunakaran, C. (2016). Infrared spectroscopy combined with imaging: A new developing analytical tool in health and plant science. Applied Spectroscopy Reviews, 51, 466–483. https://doi.org/10.1080/05704928.2016.1157808

Lan, F., Kong, D., Li, Y., & Huang, R. (2015). Studies on the changes of protein secondary structure and carbohydrate contents in seedling-stage of Abrus cantoniensis Hance in drought stress based on FTIR and chemometrics. Pakistan Journal of Botany, 47, 1311–1316.

Larkunthod, P., Hounjia, N., Siangliw, J. L., Toojinda, T., Sanithon, J., Jongdee, B., & Theerakulpisut, P. (2018). Physiological responses under drought stress of improved drought tolerant rice lines and their parents. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 679–687. https://doi.org/10.15835/nbha46211188

Legner, N., Meinen, C., & Rauber, R. (2018). Root differentiation of agricultural plant cultivars and proveniences using FTIR spectroscopy. Frontiers in Plant Science, 9, Article 748. https://doi.org/10.3389/fpls.2018.00748

Lenka, S. K., Katiyar, A., Chinnusamy, V., & Bansal, K. C. (2011). Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal, 9, 315–327. https://doi.org/10.1111/j.1467-7652.2010.00560.x

Lu, Z., & Neumann, P. M. (1998). Water-stressed maize, barley, and rice seedlings show species diversity in mechanisms of leaf growth inhibition. Journal of Experimental Botany, 49, 1945–1952. https://doi.org/10.1093/jxb/49.329.1945

Luz, R. B. (2006). Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies. New Phytologist, 172, 305–318. https://doi.org/10.1111/j.1469-8137.2006.01823.x

McCann, M. C., Chen, L., Roberts, K., Kemsley, E. K., Sene, C., Carpita, N. C., Stacey, N. J., & Wilson, R. H. (1997). Infrared microspectroscopy: Sampling heterogeneity in plant cell wall composition and architecture. Physiologia Plantarum, 100, 729–738. https://doi.org/10.1111/j.1399-3054.1997.tb03080.x

McCann, M. C., Hammouri, M., Wilson, R., Belton, P., & Roberts, K. (1992). Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiology, 100, 1940–1947. https://doi.org/10.1104/pp.100.4.1940

Monkham, T., Jongdee, B., Pantuwan, G., Mitchell, J. H., Sanitchon, J., & Fukai, S. (2018). On-farm multi-location evaluation of occurrence of drought types and rice genotypes selected from controlled-water on-station experiments in northeast Thailand. Field Crops Research, 220, 27–36. https://doi.org/10.1016/j.fcr.2017.05.004

Monkham, T., Jongdee, B., Pantuwan, G., Sanitchon, J., Mitchell, J. H., & Fukai, S. (2015). Genotypic variation in grain yield and flowering pattern in terminal and intermittent drought screening methods in rainfed lowland rice. Field Crops Research, 175, 26–36. https://doi.org/10.1016/j.fcr.2015.02.003

Nikalje, G. C., Kumar, J., Nikam, T. D., & Suprasanna, P. (2019). FT-IR profiling reveals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.). Biotechnology Reports, 23, Article e00352. https://doi.org/10.1016/j.btre.2019.e00352

Phansak, P., Siriwong, S., Sangpueak, R., Kanawapee, N., Thumanu, K., & Buensanteai, N. (2021). Screening rice blast-resistant cultivars via synchrotron Fourier transform infrared (SR-FTIR) microspectroscopy. Emirates Journal of Food and Agriculture, 33(9), 726–741.

Prasad, P. V. V., Staggenborg, S. A., Ristic, Z., Ahuja, L. R., Reddy, V. R., Saseendran, S. A., & Yu, Q. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Advances in Agricultural Systems Modelling Series, 1, 301–355. https://doi.org/10.2134/advagricsystmodel1.c11

Premachandra, G. S., Saneoka, H., Fujita, K., & Ogata, S. (1992). Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. Journal of Experimental Botany, 43, 1569–1576. https://doi.org/10.1093/jxb/43.12.1569

Qiu, L., Li, X. Y., Liu, P., Fan, S. G., Xie, M. H., Liu, R. M., & Wang, J. (2014). Analysis of leave FTIR of nine kinds of plants from Rosaceae with genetic relationship. Guang Pu Xue Yu Guang Pu Fen Xi, 34(2), 344–349.

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defence pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696. https://doi.org/10.1104/pp.103.033431

Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. BioMed Research International, 2018, Article 3158474. https://doi.org/10.1155/2018/3158474

Sanchez, P. M., Pauli, E. D., Scheel, G. L., Rakocevic, M., Bruns, R. E., & Scarminio, I. S. (2018). Irrigation and light access effects on Coffea arabica L. leaves by FTIR-chemometric analysis. Journal of the Brazilian Chemical Society, 29, 168–176. https://doi.org/10.21577/0103-5053.20170125

Schonfeld, M. A., Johnson, R. C., Carver, B. F., & Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28, 526–531. https://doi.org/10.2135/cropsci1988.0011183X002800030021x

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage and antioxidative defence mechanism in plants under stressful conditions. Journal of Botany, 26, Article 217037. https://doi.org/10.1155/2012/217037

Shereen, A., Khanzada, M. A., Baloch, M. A. W., Asma, Shirazi, M. U., Khan, M. A., & Arif, M. (2019). Effects of PEG induced water stress on growth and physiological responses of rice genotypes at seedling stage. Pakistan Journal of Botany, 51(6), 2013–2021. https://doi.org/10.30848/PJB2019-6(13)

Sovannarun, V., Nualsri, C., Nakkanong, K., & Duangpan, S. (2019). Morphological and physiological responses of local rice varieties to drought stress. Songklanakarin Journal of Plant Science, 6(4), 47–54.

Sultan, M. S., Abdel-Moneam, M. A., El-Abd, A. B., & El-Naem, S. A. (2014). Inheritance of some root and grain quality traits in rice under water deficiency conditions. Journal of Agronomy, 13(3), 89–99. https://doi.org/10.3923/ja.2014.89.99

Surewicz, W. K., Mantsch, H. H., & Chapman, D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry, 32, 389–394. https://doi.org/10.1021/bi00053a001

Thanh, L. T., Thumanu, K., Wongkaew, S., Boonkerd, N., Teaumroong, N., Phansak, P., & Buensanteai, N. (2017). Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. Journal of Plant Interactions, 12, 108–120. https://doi.org/10.1080/17429145.2017.1291859

Thumanu, K., Sompong, M., Phansak, P., Nontapot, K., & Buensanteai, N. (2015). Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007. Journal of Plant Interactions, 10, 270–279. https://doi.org/10.1080/17429145.2015.1059957

Thumanu, K., Wongchalee, D., Sompong, M., Phansak, P., Thanh, L. T., Namanusart, W., Vechklang, K., Kaewnum, S., & Buensanteai, N. (2017). Synchrotron-based FTIR microspectroscopy of chili resistance induced by bacillus subtilis strain d604 against anthracnose disease. Journal of Plant Interactions, 12, 255–263. https://doi.org/10.1080/17429145.2017.1325523

Türker-Kaya, S., & Huck, C. W. (2017). A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules, 22, Article 168. https://doi.org/10.3390/molecules22010168

Vaezi, B., Bavei, V., & Shiran, B. (2010). Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. African Journal of Agricultural Research, 5, 881–892.

Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought. salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14. https://doi.org/10.1007/s00425-003-1105-5

Westworth, S., Ashwath, N., & Cozzolino, D. (2019). Application of FTIR-ATR spectroscopy to detect salinity response in beauty leaf tree (Calophyllum inophyllum L.). Energy Procedia, 160, 761–768. https://doi.org/10.1016/j.egypro.2019.02.182

Yoshida, S., Forno, D. A., Cock, J. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. International Rice Research Institute.

Yu, P. (2012). Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy, 20, 229–251. https://doi.org/10.1155/2006/263634

Xie, E., Li, Y., Tang, D., Lv, Y., Shen, Y., & Cheng, Z. (2019). A strategy for generating rice apomixis by gene editing. Journal of Integrative Plant Biology, 61(8), 911–916. https://doi.org/10.1111/jipb.12785

Zare, M., Azizi, M. H., & Bazrafshan, F. (2011). Effect of drought stress on some agronomic traits in ten barley (Hordeum vulgare) cultivars. Technical Journal of Engineering and Applied Sciences, 1, 57–62.

Zhao, X., Yang, X., Shi, Y., Chen, G., & Li, X. (2013). Protein and lipid characterization of wheat roots plasma membrane damaged by Fe and H using ATR-FTIR method. Journal of Biophysical Chemistry, 4, 28–35. https://doi.org/10.4236/jbpc.2013.41004

Zhao, Y., Zhao, J., Zhao, C., Zhou, H., Li, Y., Zhang, J., Li, L., Hu, C., Li, W., Peng, X., Lu, X., Lin, F., & Xu, G. (2015). A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Scientific Reports, 5, Article 16346. https://doi.org/10.1038/srep16346




DOI: https://doi.org/10.5586/aa.7421

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society