Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wrocław) during 2005–2014

Carsten Ambelas Skjøth, Daria Bilińska, Małgorzata Werner, Małgorzata Malkiewicz, Beverley Adams-Groom, Maciej Kryza, Anetta Drzeniecka-Osiadacz

Abstract


In this study we analyzed daily pollen concentrations of Alnus spp. and Betula spp. from Worcester, UK and Wrocław, Poland. We analyzed seasonality, annual pollen index and footprint areas for the observed pollen concentrations by using the trajectory model hybrid single particle Lagrangian integrated trajectory (HYSPLIT). We examined 10 years of data during the period 2005–2014 and found substantial differences in the seasonality, pollen indices and footprint areas. For both genera, concentrations in Wrocław are in general much higher, the seasons are shorter and therefore more intense than in Worcester. The reasons appear to be related to the differences in overall climate between the two sites and more abundant sources in Poland than in England. The footprint areas suggest that the source of the pollen grains are mainly local trees but appear to be augmented by remote sources, in particular for Betula spp. but only to a small degree for Alnus spp. For Betula spp., both sites appear to get contributions from areas in Germany, the Netherlands and Belgium, while known Betula spp. rich regions in Russia, Belarus and Scandinavia had a very limited impact on the pollen concentrations in Worcester and Wrocław. Substantial and systematic variations in pollen indices are seen for Betula spp. in Wrocław with high values every second year while a similar pattern is not observed for Worcester. This pattern was not reproduced for Alnus spp.

Keywords


aeroallergens; trajectories; HYSPLIT; climate; seasonality; sources

Full Text:

PDF

References


Ipsen H, Lowenstein H. Basic features of cross-reactivity in tree and grass pollen allergy. Clin Rev Allergy Immunol. 1997;15:389–396. http://dx.doi.org/10.1007/BF02737734

Valenta R, Breiteneder H, Pettenburger K, Breitenbach M, Rumpold H, Kraft D, et al. Homology of the major birch-pollen allergen, Bet v I, with the major pollen allergens of alder, hazel, and hornbeam at the nucleic acid level as determined by cross-hybridization. J Allergy Clin Immunol. 1991;87:677–682. http://dx.doi.org/10.1016/0091-6749(91)90388-5

Skjøth CA, Šikoparija B, Jäger S. Pollen sources. In: Sofiev M, Bergmann KC, editors. Allergenic pollen. Dordrect: Springer; 2013. p. 9–27. http://dx.doi.org/10.1007/978-94-007-4881-1_2

van Ree R, van Leeuwen WA, Akkerdaas JH, Aalberse RC. How far can we simplify in vitro diagnostics for Fagales tree pollen allergy? A study with three whole pollen extracts and purified natural and recombinant allergens. Clin Exp Allergy. 1999;29:848–855. http://dx.doi.org/10.1046/j.1365-2222.1999.00521.x

Gumowski PI, Clot B, Davet A, Saad S, Hassler H, Dunoyer-Geindre S. The importance of hornbeam (Carpinus sp.) pollen hypersensitivity in spring allergies. Aerobiologia. 2000;16:83–86. http://dx.doi.org/10.1023/A:1007600313862

Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, et al. GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64:1507–1515. http://dx.doi.org/10.1111/j.1398-9995.2009.02089.x

Grewling Ł, Jackowiak B, Nowak M, Uruska A, Smith M. Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (western Poland). Grana. 2012;51:280–292. http://dx.doi.org/10.1080/00173134.2012.700727

Skjøth CA, Smith M, Brandt J, Emberlin J. Are the birch trees in southern England a source of Betula pollen for north London? Int J Biometeorol. 2009;53:75–86. http://dx.doi.org/10.1007/s00484-008-0192-1

Adams-Groom B, Emberlin J, Corden J, Millington W, Mullins J. Predicting the start of the birch pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia. 2002;18:117–123. http://dx.doi.org/10.1023/A:1020698023134

Myszkowska D. Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Aerobiologia. 2013;29:31–44. http://dx.doi.org/10.1007/s10453-012-9260-4

Hernandez-Ceballos MA, Skjøth CA, Garcia-Mozo H, Bolivar JP, Galan C. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol. 2014;58:2031–2043. http://dx.doi.org/10.1007/s00484-014-0804-x

Veriankaite L, Siljamo P, Sofiev M, Sauliene I, Kukkonen J. Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia. 2010;26:47–62. http://dx.doi.org/10.1007/s10453-009-9142-6

Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol. 2006;50:392–402. http://dx.doi.org/10.1007/s00484-006-0027-x

Mahura A, Korsholm U, Baklanov A, Rasmussen A. Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia. 2007;23:171–179. http://dx.doi.org/10.1007/s10453-007-9061-3

Skjøth CA, Sommer J, Stach A, Smith M, Brandt J. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy. 2007;37:1204–1212. http://dx.doi.org/10.1111/j.1365-2222.2007.02771.x

Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen K, et al. Copenhagen – a significant source of birch (Betula) pollen? Int J Biometeorol. 2008;52:453–462. http://dx.doi.org/10.1007/s00484-007-0139-y

Skjøth CA, Baker P, Sadys M, Adams-Groom B. Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate. 2015;14:414–428. http://dx.doi.org/10.1016/j.uclim.2014.09.007

Linkosalo T, Ranta H, Oksanen A, Siljamo P, Luomajoki A, Kukkonen J, et al. A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agric For Meteorol. 2010;150:1579–1584. http://dx.doi.org/10.1016/j.agrformet.2010.08.007

Sakalli A. How can effect the synergy of climate change, soil units and vegetation groups the potential global distribution of plants up to 2300: a modelling study for prediction of potential global distribution and migration of the N2 fixing species Alnus spp. Biogeosciences Discuss. 2015;12:815–864. http://dx.doi.org/10.5194/bgd-12-815-2015

Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography. 2012;21:50–63. http://dx.doi.org/10.1111/j.1466-8238.2010.00613.x

Newnham RM, Sparks TH, Skjøth CA, Head K, Adams-Groom B, Smith M. Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol. 2013;57:391–400. http://dx.doi.org/10.1007/s00484-012-0563-5

Frenguelli G, Bricchi E. The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia. 1998;14:39–44. http://dx.doi.org/10.1007/BF02694593

Kasprzyk I. Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia. 2003;19:113–120. http://dx.doi.org/10.1023/A:1024406819444

Hirst J. M. An automatic volumetric spore trap. Ann Appl Biol. 1952;39:257–265. http://dx.doi.org/10.1111/j.1744-7348.1952.tb00904.x

Malkiewicz M, Klaczak K, Drzeniecka-Osiadacz A, Krynicka J, Migała K. Types of Artemisia pollen season depending on the weather conditions in Wrocław (Poland), 2002–2011. Aerobiologia. 2014;30:13–23. http://dx.doi.org/10.1007/s10453-013-9304-4

Kasprzyk I. Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland), evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol. 2008;52:41–351. http://dx.doi.org/10.1007/s00484-007-0129-0

Makra L, Santa T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, et al. Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res. 2010;115. http://dx.doi.org/10.1029/2010JD014743

Käpyla M, Penttinen A. An evaluation of the microscopial counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana. 1981;20:131–141. http://dx.doi.org/10.1080/00173138109427653

Goldberg C, Buch H, Moseholm L, Weeke ER. Airborne pollen records in Denmark, 1977–1986. Grana. 1988;27:209–217. http://dx.doi.org/10.1080/00173138809428928

Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, et al. The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol. 2011;55:633–644. http://dx.doi.org/10.1007/s00484-010-0376-3

Skjøth CA, Sommer J, Frederiksen L, Gosewinkel Karlson U. Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys. 2012;12:11107–11123. http://dx.doi.org/10.5194/acp-12-11107-2012

Draxler R, Hess GD. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Australian Meteorological Magazine. 1998;47:295–308.

Draxler R, Stunder B, Rolph G, Stein A, Taylor A. Hysplit4 users guide, revision September 2014 [Internet]. 2014 [cited 2015 Sep 11]; Available from: http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf

Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, et al. Potential sources of airborne Alternaria spp. spores in south-west Spain. Sci Total Environ. 2015;533:165–176. http://dx.doi.org/10.1016/j.scitotenv.2015.06.031

Stach A, Smith M, Skjøth CA, Brandt J. Examining Ambrosia pollen episodes at Poznañ (Poland) using back-trajectory analysis. Int J Biometeorol. 2007;51:275–286. http://dx.doi.org/10.1007/s00484-006-0068-1

Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska, S, Šimić et al. The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol. 2009;53:263–272. http://dx.doi.org/10.1007/s00484-009-0212-9

Stach A, Emberlin J, Smith M, Adams-Groom B, Myszkowska D. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London), Int J Biometeorol. 2008;52:311–321. http://dx.doi.org/10.1007/s00484-007-0127-2

Pauling A, Rotach MW, Gehrig R, Clot C. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. Int J Biometeorol. 2012;56:949–958. http://dx.doi.org/10.1007/s00484-011-0505-7

Siljamo P, Sofiev M, Filatova E, Grewling Ł, Jäger S, Khoreva E, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. Int J Biometeorol. 2013;57:125–136. http://dx.doi.org/10.1007/s00484-012-0539-5

Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, et al. Statistical mapping of tree species over Europe. Eur J For Res. 2011:145–157.

Skjøth CA, Geels C, Hvidberg M, Hertel O, Brandt J, Frohn LM, et al. An inventory of tree species in Europe – an essential data input for air pollution modelling. Ecol Modell. 2008;217:292–304. http://dx.doi.org/10.1016/j.ecolmodel.2008.06.023

Estrella N, Menzel A, Krämer U, Behrendt H. Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol. 2006;51:49–59. http://dx.doi.org/10.1007/s00484-006-0038-7

Khwarahm N, Dash J, Atkinson P, Newnham RM, Skjøth CA, Adams-Groom B, et al. Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int J Biometeorol. 2014;58:529–545. http://dx.doi.org/10.1007/s00484-013-0739-7

Pauling A, Gehrig R, Clot B. Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia. 2014;30:45–57. http://dx.doi.org/10.1007/s10453-013-9308-0

Latalowa M, Mietus M, Uruska A. Seasonal variations in the atmospheric Betula pollen count in Gdansk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia. 2002;18:33–43. http://dx.doi.org/10.1023/A:1014905611834

Dahl Å, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M, et al. The onset, course and intensity of the pollen season. In: Sofiev M, Bergmann KC, editors. Allergenic pollen: a review of the production, release, distribution and health impacts. Dordrecht: Springer; 2013. p. 29–70. http://dx.doi.org/10.1007/978-94-007-4881-1_3

Piotrowska K, Kaszewski BM. Variations in birch pollen (Betula spp.) seasons in Lublin and correlations with meteorological factors in the period 2001–2010. A preliminary study. Acta Agrobot. 2011;64(2);39–50. http://dx.doi.org/10.5586/aa.2011.016

Sofiev M, Berger U, Prank M, Vira J, Arteta J, Belmonte J, et al. MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmos Chem Phys Discuss. 2015;15:8243–8281. http://dx.doi.org/10.5194/acpd-15-8243-2015




DOI: https://doi.org/10.5586/aa.2015.044

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society