Changes in flowering of birch in the Czech Republic in recent 25 years (1991–2015) in connection with meteorological variables

Lenka Hajkova, Věra Kožnarová, Martin Možný, Lenka Bartošová

Abstract


The paper presents the results of long-term phenological observations of silver birch (Betula pendula) during the years 1991–2015 across the phenological network of the Czech Hydrometeorological Institute (CHMI – Český hydrometeorologický ústav). The data assembled over this period were used for identification of timing of generative phenophases associated with pollen release into the air: inflorescence emergence 10%, beginning of flowering 10%, beginning of flowering 50%, beginning of flowering 100%, and end of flowering. The stations are situated at altitudes from 155 m (Doksany) to 1102 m (Modrava). The average timing of beginning of flowering 10% was 8th April (Lednice = lowland station) and 14th May (Modrava = mountain station); the average timing of beginning of flowering 50% was 12th April (Lednice) and 20th May (Modrava); the average timing of beginning of flowering 100% was 18th April (Lednice) and 22nd May (Modrava), and the average timing of end of flowering was 26th April (Lednice) and 28th May (Modrava).

The totals of effective temperatures above 5°C (TS5) and sums of daily precipitation were used as a bio-climatological criterion for assessment of the dependence of phenological phases on meteorological variables. The average sums of TS5 and the average sums of daily precipitation total were as follows: 61.0–80.8°C, 82.8–327.4 mm (inflorescence emergence); 105.2–106.4°C, 85.9–365.2 mm (beginning of flowering 10%); 124.8–130.8°C, 89.8–385.9 mm (beginning of flowering 50%); 144.7–158.6°C, 95.2–390.7 mm (beginning of flowering 100%); and 181.6–223.8°C, 104.7–427.4 mm (end of flowering).

Synoptic situations occurring during interphase intervals were obtained – the most often found synoptic situations were B (stationary trough over Central Europe), Bp (east travelling trough), NEa (northeast anticyclonic situation), Sa (south anticyclonic situation) and SWc2 (southwest cyclonic situation moving northeast to eastwards).

The period of occurrence of birch pollen in the air lasts 52 days on average and the highest concentration was recorded on 23rd April, 2003 – 2606 pollen grains/m3.


Keywords


birch; phenology; aerobiology; Czech Republic; CHMI; effective temperature; synoptic situation

Full Text:

PDF

References


Menzel A. Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol. 2000;40:76–81. http://dx.doi.org/10.1007/s004840000054

Rosenzwieg C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, et al. Attributing physical and biological impacts to anthropogenic climate change. Nature. 2008;453:353–357. http://dx.doi.org/10.1038/nature06937

Hájková L, Voženílek V, Tolasz R, Kohut M, Možný M, Nekovář J, et al. Atlas of the phenological conditions in Czechia. Praha: ČHMÚ, Univerzita Palackého v Olomouci; 2012.

Roetzer T, Wittenzeller M, Haeckel H, Nekovar J. Phenology in Central Europe – differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol. 2000;44(2):60–66. http://dx.doi.org/10.1007/s004840000062

Walther GR. Community and ecosystem responses to recent climate change. Phil Trans R Soc B. 2010;365(1549):2019–2024. http://dx.doi.org/10.1098/rstb.2010.0021

Hájková L, Sedláček V, Nekovář J. Temporal and spatial variability of the most important phenological phases of birch in the Czech republic. Folia Oecologica. 2007;34(2):86–96.

Caffarra A, Donnelly A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol. 2011;55(5):711–721. http://dx.doi.org/10.1007/s00484-010-0386-1

Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chudne I, et al. Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol. 2011;151:969–980. http://dx.doi.org/10.1016/j.agrformet.2011.03.003

Fernández-González M, Rodríguez-Rajo FJ, Jato V, Aira MJ. Incidence of fungal spores in a vineyard of the denomination of origin Ribeiro (Ourense – NW Spain). Ann Agric Environ Med. 2009;16:263–271.

Methodical instruction for phenological stations – wild plants. Methodology instruction No. 10. Prague: CHMI; 2009.

Coufal L, Houška V, Reitschläger JD, Valter J, Vráblík T. Phenological atlas. Prague: CHMI; 2004.

Kožnarová V, Klabzuba J, Bureš R. The use of thermopluviogram to evaluate agrometeorological year, season and month. Pamięt Puł. 1997;110:71–78.

Kožnarová V, Klabzuba J. Traditional and modern methods in weather and climate evaluation in biological disciplines. Praha: Výzkumný ústav rostlinné výroby; 2010.

Kožnarová V, Sulovská S, Hájková L. Temporal variability of fruit trees phenophase onset in relation to synoptic situations within the CHMI phenological network in period 1991–2010. Úroda, vědecká příloha. 2011;285–295.

Hirst JM. An automatic volumetric spore-trap. Ann Appl Biol. 1952;39:257–265. http://dx.doi.org/10.1111/j.1744-7348.1952.tb00904.x

Brádka J, Dřevikovský A, Gregor Z, Kolesár J. Počasí na území Čech a Moravy v typických povětrnostních situacích. Praha: HMÚ; 1961.

Křivancová S, Vavruška F. Základní meteorologické prvky v jednotlivých povětrnostních situacích na území České republiky v období 1961–1990. Národní klimatický program ČR. Praha: ČHMÚ; 1997.

Racko S. Typizace povětrnostních situací pro území České republiky [Internet]. 2015 [cited 2015 Dec 31]; Available from: http://www.chmi.cz/portal/dt?portal_lang=cs&menu=JSPTabContainer/P4_Historicka_data/P4_1_Pocasi/P4_1_12_Typizace_situaci&last=false

Hájková L, Kožnarová V, Bachanová S, Nekovář J. Fenologické charakteristiky vybraných lesních bylin v Česku. Praha: Český hydrometeorologický ústav; 2013.

Ahas R. Changes in European spring phenology. Int J Climatol. 2002;22:1727–1738. http://dx.doi.org/10.1002/joc.818

Jato V, Rodríguez-Rajo FJ, Aira MJ. Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Ann Agric Environ Med. 2007;14:271-280.

Galán C, Vázquez L, García-Mozo H, Domínguez E. Forecasting olive (Olea europaea L.) crop yield based on pollen emission. Field Crops Res. 2004;86:43–51. http://dx.doi.org/10.1016/S0378-4290(03)00170-9

García-Mozo H, Perez-Badía R, Galán C. Aerobiological and meteorological factors’ influence of olive (Olea europaea L.) crop yield in Castilla-La Mancha (central Spain). Aerobiologia. 2008;24:13–18. http://dx.doi.org/10.1007/s10453-007-9075-x