Effect of different sucrose and nitrogen salt levels in the medium and temperature on in vitro propagation of Helleborus niger L.

Eleonora Anna Gabryszewska

Abstract


Helleborus niger L. is a rhizomatous, herbaceous perennial with overwintering, divided, basal leaves. The objective of the study was to investigate the influence of different levels of sucrose (10, 20, 30, 40, 50, 60, 70, and 80 g l−1) and nitrogen salts (25%, 50%, and 100% according to MS medium) as well as temperature (15°C, 20°C) on in vitro multiplication and rooting and ex vitro acclimatization of H. niger. The growth and multiplication of axillary shoots were performed on modified MS medium supplemented with various growth regulators (2iP, BAP and kinetin – each at a concentration of 1.0 mg l−1, GA3 2.5 mg l−1). For the induction of roots, the medium was supplemented with IBA 1 mg l−1 and NAA 0.1 mg l−1. Rooted plants were transplanted in a peat–perlite substrate (4:1) in a heated greenhouse for ex vitro acclimatization. The multiplication rate of H. niger shoots, in vitro rooting, and ex vitro acclimatization were strongly dependent on the sucrose/nitrogen salt relationship in the medium. The highest multiplication rate of axillary shoots (3.7) was found at a temperature of 15°C or 20°C, on the medium with cytokinins and GA3 supplemented with sucrose 20–30 g l−1 and nitrogen salts at 50%. Sucrose at a concentration of 50 g l−1 strongly stimulated the number of roots per microplant (5.8–6.0) on the media with a reduced level of nitrogen salts (25% and 50%) when the temperatures were 20°C and 15°C, respectively. The plants rooted on the media with a high sucrose/nitrogen salt ratio showed acclimatization rates which ranged from 82% to 100%. Morphological observation of plantlets revealed obvious differences in leaf shape and size and the architecture of the root system as well as differences in the developmental stages of shoots grown on media with different sucrose and nitrogen salt concentrations.

Keywords


micropropagation; axillary shoots; Helleborus niger; nitrogen salts; sucrose; growing temperature; rooting

Full Text:

PDF

References


Tutin TG. Ranunculaceae. In: Tutin TG, Heywood VH, Burgess NA, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea. Cambridge: University Press; 1964. p. 206–242. (vol 1).

Nowicke JW, Skvarla JJ. A palynological study of the genus Helleborus (Ranunculaceae). Grana. 1983;22:129–140. http://dx.doi.org/10.1080/00173138309427698

Servettaz O, Colombo ML, Tomè F. Taxonomic investigations on Helleborus viridis s.1. (Ranunculaceae) in Northen Italy. Plant Syst Evol. 1988;160:181–188. http://dx.doi.org/10.1007/BF00936045

Mathew B. Hellebores. Ipswich: Alpine Garden Society Publications; 1989.

Zonneveld BJM. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Syst Evol. 2001;229:125–130. http://dx.doi.org/10.1007/s006060170022

Meiners J, Debener T, Schweizer G, Winkelmann T. Analysis of the taxonomic subdivision within the genus Helleborus by nuclear DNA content and genome-wide DNA markers. Sci Hortic (Amsterdam). 2011;128:38–47. http://dx.doi.org/10.1016/j.scienta.2010.12.011

Braun A, Bouché C. A classification of Helleborus. In: Index Seminum Horti Botanici Berolinensi. Appendix 13–14; 1861.

McLewin W, Mathew B. Hellebores: the first of a series of articles discussing the genus Helleborus. New Plantsman. 1995;2:112–122.

Salopek-Sondi B, Magnus V. Developmental studies in the Christmas rose (Helleborus niger L.). Int J Plant Dev Biol. 2007;1:151–159.

Šušek A, Ivančič A, Lemoine MC, Guillemin JP, Caneill J, Šiško M, et al. Variability of Christmas rose (Helleborus niger L.) populations and its potential use in genetic breeding. Acta Biol Crac Ser Bot. 2005;42/2:129–135.

Poupet R, Cardin L, Henri A, Onesto JP. Healthy in vitro propagation by meristem tip culture of Helleborus niger’s selected clone for cut flower. Acta Hortic. 2006;725:301–310.

Watanabe K, Sakagami H, Mimaki Y. Four new steroidal saponins from the rhizome of Helleborus orientalis. Heterocycles. 2005;65(4):775–785. http://dx.doi.org/10.3987/COM-04-10319

Niimi Y, Han DS, Abe S. Temperatures affecting embryo development and seed germination of Christmas rose (Helleborus niger) after sowing. Sci Hortic (Amsterdam). 2006;107;292–296. http://dx.doi.org/10.1016/j.scienta.2005.08.007

Rupprecht H, Miessner E. Zierplanzenbau. Berlin: VEB Deutscher Landwirtschaftsverlag; 1985.

Lim CC, Kitto SL. Micropropagation of Helleborus orientalis Lam. and Aconitum uncinatum Linn. (Ranunculaceae). HortScience. 1995;30(4):871.

Syringe M. In vitro cloning of Helleborus niger. Plant Cell Rep. 2002;20:895–900. http://dx.doi.org/10.1007/s00299-001-0420-1

Dhooghe E, van Labeke MC. In vitro propagation of Helleborus species. Plant Cell Tissue Organ Cult. 2007;91:175–177. http://dx.doi.org/10.1007/s11240-007-9280-x

Beruto M, Curir P. Effects of chilling and hormonal supply on rooting and in vivo establishment of micropropagated plantlets of Helleborus spp. Acta Hortic. 2009;813: 365–372.

Beruto M, Viglione S, Bisignano A. Micropropagation of Helleborus through axillary budding. Methods Mol Biol. 2013;994:259–267.

Gabryszewska E. Wpływ regulatorów wzrostu, sacharozy i temperatury na wzrost i rozwój Helleborus purpurascens Waldst. et Kit. in vitro. 56. Zjazd Polskiego Towarzystwa Botanicznego “Interdyscyplinarne i aplikacyjne znaczenie nauk botanicznych”, Olsztyn; 2013. p. 266–267.

Coruzzi G, Bush DR. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol. 2001;125:61–64. http://dx.doi.org/10.1104/pp.125.1.61

Coruzzi GM, Zhou L. Carbon and nitrogen sensing and signaling in plants: emerging “matrix effects”. Curr Opin Plant Biol. 2001;4:247–253. http://dx.doi.org/10.1016/S1369-5266(00)00168-0

Paul MJ, Foyer CH. Sink regulation of photosynthesis. J Exp Bot. 2001;52(360):1383–1400. http://dx.doi.org/10.1093/jexbot/52.360.1383

Starck Z. Różnorodne funkcje węgla i azotu w roślinach. Kosmos. 2006;55(2–3):243–257.

Zheng ZL. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav. 2009;4(7):584–591. http://dx.doi.org/10.4161/psb.4.7.8540

Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant. 2010;3(6):937–996. http://dx.doi.org/10.1093/mp/ssq049

Sang Y, Sun W, Yang Z. Signalling mechanisms integrating carbon and nitrogen utilization in plants. Front Biol (Beijing). 2012;7(6):548–556. http://dx.doi.org/10.1007/s11515-012-1249-4

Caboche M. Nitrogen, carbohydrate and zinc requirements for the efficient induction of shoot morphogenesis from protoplast-derived colonies of Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult. 1987;8:197–206. http://dx.doi.org/10.1007/BF00040946

Hdider C, Desjardines Y. Effect of sucrose on photosynthesis and phosphoenolpyruvate carboxylase activity of in vitro cultured strawberry plantlets. Plant Cell Tissue Organ Cult. 1994;36:27–33. http://dx.doi.org/10.1007/BF00048312

Vinterhalter DV, Vinterhalter BS. Hormone-like effects of sucrose in plant in vitro cultures. Phyton. 1999;39(3):57–60.

Vinterhalter B, Vinterhalter D, Nešković M. Effect of irradiance, sugars and nitrogen on leaf size of in vitro grown Ceratonia siliqua L. Biol Plant. 2001;44:185–188. http://dx.doi.org/10.1023/A:1010230821452

Vinterhalter B, Ninkowić S, Zdravković-Korać S, Subotić A, Vinterhalter D. Effect of nitrogen salts on the growth of Ceratonia siliqua L. shoot cultures. Arch Biol Sci. 2007;59:217–222. http://dx.doi.org/10.2298/ABS0703217V

Ogura-Tsujita Y, Okubo H. Effects of low nitrogen medium on endogenous changes in ethylene, auxins, and cytokinins in in vitro shoot formation from rhizomes of Cymbidium kanran. In Vitro Cell Dev Biol Plant. 2006;42:614–616. http://dx.doi.org/10.1079/IVP2006823

Gabryszewska E, Kawa-Miszczak L, Węgrzynowicz-Lesiak E, Saniewski M. Wpływ temperatury oraz zróżnicowanego poziomu węgla/azotu w pożywce na wzrost i rozwój Clematis pitcheri in vitro. Zesz Probl Post Nauk Rol. 2008;524:73–81.

Gabryszewska E. Rola regulatorów wzrostu, węglowodanów, soli mineralnych, glutationu i temperatury w rozmnażaniu in vitro piwonii chińskiej. Skierniewice: Instytut Sadownictwa i Kwiaciarstwa; 2009. (Zesz Nauk Inst Sadow Kwiac Monografie i Rozprawy).

Gabryszewska E. The effects of glucose and growth regulators on the organogenesis of Paeonia lactiflora Pall. in vitro. J Fruit Ornam Plant Res. 2010;18(2):309–320.

Gabryszewska E. Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. J Fruit Ornam Plant Res. 2011;9(2):133–148.

Desjardines Y, Dubuc JF, Badr A. In vitro culture of plants: a stressful activity! Acta Hortic. 2009;812:29–50.

Serret MD, Trillas MI, Matas J, Araus JL. The effect of different closure types, light, and sucrose concentrations on carbon isotope composition and growth of Gardenia jasminoides plantlets during micropropagation and subsequent acclimation ex vitro. Plant Cell Tissue Organ Cult. 1997;47:217–230. http://dx.doi.org/10.1007/BF02318976

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

Aschan G, Pfanz H, Vodnik D, Batič F. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica. 2005;43(1):55–64. http://dx.doi.org/10.1007/s11099-005-5064-x

Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:49–81. http://dx.doi.org/10.1146/annurev.arplant.51.1.49

Ciereszko I. Regulacyjna rola cukrów. Percepcja cukru i przekazywanie sygnału w komórkach roślinnych. Post Biol Kom. 2002;29:269–282.

Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8(1):93–102.

Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57:675–709. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105441

Takayama S, Misawa M. Differentiation in Lilium bulbscales grown in vitro. Effects of activated charcoal, physiological age of bulbs and sucrose concentration on differentiation and scale leaf formation in vitro. Physiol Plant. 1980;48:121–125. http://dx.doi.org/10.1111/j.1399-3054.1980.tb03229.x

Gerrits MM, de Klerk GJ. Dry-matter partitioning between bulbs and leaves in plantlets of Lilium speciosum regenerated in vitro. Acta Bot Neerl. 1992;41(4):461–468. http://dx.doi.org/10.1111/j.1438-8677.1992.tb00516.x

Ascough GD, Erwin JE, van Staden J. Reduced temperature, elevated sucrose, continuous light and gibberellic acid promote corm formation in Watsonia vanderspuyiae. Plant Cell Tissue Organ Cult. 2008;95:275–283. http://dx.doi.org/10.1007/s11240-008-9441-6

Omokolo ND, Boudjeko T, Tsafack Takadong JJ. In vitro tuberization of Xanthosoma effect of phytohormones, sucrose, nitrogen and photoperiod. Sci Hortic (Amsterdam). 2003;98:337–345. http://dx.doi.org/10.1016/S0304-4238(03)00066-9

Zheng Y, Liu Y, Ma M, Xu K. Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe). Acta Physiol Plant. 2008;30:513–519. http://dx.doi.org/10.1007/s11738-008-0149-3

Langens-Gerrits MM, de Klerk GJ, Croes A. Phase change in lily bulblets regenerated in vitro. Physiol Plant. 2003;119(4):590–597. http://dx.doi.org/10.1046/j.1399-3054.2003.00214.x

Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A. Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta. 2006;224(3):556–568. http://dx.doi.org/10.1007/s00425-006-0243-y

Schildhauer J, Wiedemuth K, Humbeck K. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol (Stuttg). 2008;10(1 suppl):76–84. http://dx.doi.org/10.1111/j.1438-8677.2008.00075.x

Šušek A. Morphological descriptors of Christmas rose (Helleborus niger L.). Agricultura. 2008;5:27–31.

MacGregor DR, Deak KI, Ingram PA, Malamy JE. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell. 2008;20:2643–2660. http://dx.doi.org/10.1105/tpc.107.055475

Malamy JE, Ryan KS. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol. 2001;127(3):899–909. http://dx.doi.org/10.1104/pp.010406

Zhang H, Forde B. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 1998;279:407–409. http://dx.doi.org/10.1126/science.279.5349.407

Welander TA. Effects of nitrogen, sucrose, IAA, and kinetin on explants of Beta vulgaris grown in vitro. Physiol Plant. 1976;36:7–10. http://dx.doi.org/10.1111/j.1399-3054.1976.tb05018.x

Welander TA. Influence of nitrogen and sucrose in the medium and irradiance of the stock plants on root formation in Pelargonium petioles grown in vitro. Physiol Plant. 1978;43:136–141. http://dx.doi.org/10.1111/j.1399-3054.1978.tb01581.x

Hyndman SE, Hasegawa PM, Bressan RA. The role of sucrose and nitrogen in adventitious root formation on cultured rose shoots. Plant Cell Tissue Organ Cult. 1982;1:229–238. http://dx.doi.org/10.1007/BF02318919

Gabryszewska E, Kawa-Miszczak L. Ukorzenianie in vitro i aklimatyzacja w szklarni mikrosadzonek piwonii chińskiej. Biotechnologia. 2010;2(89):172–179.




DOI: https://doi.org/10.5586/aa.2015.016

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society