Cold stress modifies bioactive compounds of kale cultivars during fall–winter harvests

Rita Jurkow, Agata Wurst, Andrzej Kalisz, Agnieszka Sękara, Stanisław Cebula

Abstract


Kale is a plant known and valued since antiquity as a healthy vegetable crop, used for culinary, decorative, but also healing purposes. The aim of the study was to examine the effect of harvest date on physiological status and nutritional composition of two kale cultivars: ‘Winterbor’ F1 (blue-green leaves) and ‘Redbor’ F1 (red-purple leaves). The leaves were harvested in three periods: before frost (>0°C), after medium (−5.0°C) and heavy frost (−15.0°C). Content of dry weight, soluble sugars, l-ascorbic acid, carotenoids, chlorophylls, polyphenols, anthocyanins, as well as antioxidant activity and peroxidase activity were determined. Cold temperature significantly affected bioactive compounds of kale. The content of dry weight, soluble sugars, l-ascorbic acid, phenolics, and antioxidant activity increased after medium frosts for both cultivars. The level of anthocyanins also increased significantly for the ‘Redbor’ F1 cultivar. After strong frost, most of the tested parameters (content of dry weight, soluble sugars, phenolics, anthocyanins, and total antioxidant and peroxidase activity) significantly increased. The chlorophyll a content was reduced by heavy frost in both seasons. Harvesting kale before and after frost may allow the level of biologically active ingredients to be regulated as cold also significantly affects the physiological status of the plants.

Keywords


Brassica oleracea L. var. acephala; harvest date; cold stress; nutritional value

Full Text:

PDF

References


Jahangir M, Kim HK, Choi YH,Verpoorte R. Health affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf. 2009;8(2):31–43. https://doi.org/10.1111/j.1541-4337.2008.00065.x

Davey M, van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, et al. Plant l-askorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric. 2000;80:825–860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3C825::AID-JSFA598%3E3.0.

CO;2-6

Pfendt LB, Vukasinovic VL, Blagojevic NZ, Radojevic MP. Second order derivative spectrophotometric method for determination of vitamin C content in fruits, vegetables and fruit juices. Eur Food Res Technol. 2003;217:269–272. https://doi.org/10.1007/s00217-003-0746-8

Nilsson J, Olsson K, Engquist G, Ekvall J, Olsson M, Nyman M, et al. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J Sci Food Agric. 2006;86:528–538. https://doi.org/10.1002/jsfa.2355

Steindal ALH, Rødven R, Hansen E, Mølmann J. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chem. 2015;174:44–51. https://doi.org/10.1016/j.foodchem.2014.10.129

Biegańska-Marecik R, Radziejewska-Kubzdela E. Zmiany zawartości związków fenolowych i zdolności przeciwutleniającej w jarmużu o małym stopniu przetworzenia pakowanym w atmosferze modyfikowanej. Bromatologia i Chemia Toksykologiczna. 2009;3:854–860.

Zdrojewicz Z, Kosowski W, Stebnicki M, Stebnicki M. Jarmuż – stare, a zapomniane warzywo. Medycyna Rodzinna. 2016;1(19):21–25.

Krochmal-Marczak B, Sawicka B, Stryjecka M, Pisarek M, Bienia B. Wartość odżywcza i prozdrowotna wybranych warzyw z rodzaju kapusta (Brassica L.). Herbalism. 2017;1(3):80–91.

Altinok S, Karakaya A. Effect of growth season on forage yields of different Brassica cultivars under Ankara conditions. Turk J Agric For. 2003;27:85–90.

Sanghera GS, Wani SH, Hussain W, Singh NB. Engineering cold stress tolerance in crop plants. Curr Genomics. 2011;12(1):30–43. https://doi.org/10.2174/138920211794520178

Jan SA, Bibi N, Shinwari KS, Rabbani MA, Ullah S, Qadir A, et al. Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of Brassica species: an updated review. Journal of Agricultural Extension and Rural Development. 2017;2(1):1–10.

Heino P, Palva ET. Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Berlin: Springer; 2004. p. 151–186. https://doi.org/10.1007/978-3-540-39402-0_7

Prasad KVSK, Saradhi PP. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci. 2004;166(5):1197–1212. https://doi.org/10.1016/j.plantsci.2003.12.031

Sharma P, Bhushan A, Dubey RD, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:217037. https://doi.org/10.1155/2012/217037

Kalisz A, Pokluda R, Jezdinský A, Sękara A, Grabowska A, Gil J, et al. Chilling-induced changes in the antioxidant status of basil plants. Acta Physiol Plant. 2016;38(8):196. https://doi.org/10.1007/s11738-016-2214-7

Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chem. 2006;97:654–660. https://doi.org/10.1016/j.foodchem.2005.04.028

Lee JH, Oh MM. Short-term low temperature increases phenolic antioxidant levels in kale. Horticulture, Environment, and Biotechnology. 2015;56(5):588–596. https://doi.org/10.1007/s13580-015-0056-7

Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. Anthocyanins in vegetative tissues: a proposed unifiedfunction in photoprotection. New Phytol. 2002;155:349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x

Grzesiuk A, Dębski H, Horbowicz M. Wpływ wybranych czynników na akumulację antocyjanów w roślinach. Postępy Nauk Rolniczych. 2008;1:81–91.

Stachula P. Short and long term low temperature responses in Arabidopsis thaliana [PhD thesis]. Umeå: Umeå University; 2015.

Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, et al. Soluble sugars – metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal Behav. 2009;4(5):388–393. https://doi.org/10.4161/psb.4.5.8294

D’Antuono LF, Neri R. Traditional crop revised: yield and quality of palm-tree kale, grown as a mechanised processing crop, as a function of cutting height. Acta Hortic. 2003;598:123–127. https://doi.org/10.17660/ActaHortic.2003.598.17

Pukacki PM. Fizjologiczne i molekularne aspekty tolerancji roślin drzewiastych na stres niskiej temperatury. In: Jankiewicz LS, Filek M, Lech W, editors. Fizjologia roślin sadowniczych. Vol. 2. Warszawa: Wydawnictwo Naukowe PWN; 2011. p. 234–264.

Almughraby E, Kalimullin MI, Timofeeva OA. Variability in enzymatic and non-enzymatic antioxidants Brassica oleracea var. sabellica in different growing conditions. Drug Invention Today. 2018;10:2981–2985.

Shao HB, Chu LY, Lu ZH, Kang CM. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci. 2008;4:8–14. https://doi.org/10.7150/ijbs.4.8

Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol. 2008;28:947–957. https://doi.org/10.1093/treephys/28.6.947

Pawłowska A, Treder K. Peroksydazy – małe enzymy o wielkim znaczeniu. Ziemniak Polski. 2014;1:23–25.

Biczak R, Telesiński A, Pawłowska B, Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion. Plant Physiol Biochem. 2016;107:248–256. https://doi.org/10.1016/j.plaphy.2016.05.016

Pijanowski E, Mrożewski S, Horubała A. Technologia produktów owocowych i warzywnych. Warszawa: PWRiL; 1964.

Yemm EW, Wills AJ. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 1954;54:508–514. https://doi.org/10.1042/bj0570508

Tillmans J, Hirsch P, Jackisch J. Das Reduktionsvermögen pflanzlicher Lebensmittel und seine Beziehung zum Vitamin C. Der Gehalt der verschiedenen Obst- und Gemüsearten an reduzierendem Stoff. Zeitschrift für Untersuchung der Lebensmittel. 1932;63:241–267. https://doi.org/10.1007/BF01653754

Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11:591–593. https://doi.org/10.1042/bst0110591

Singleton L, Orthofer R, Lamuela-Raventions RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999;299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Jakobek L, Šeruga M, Medvidović-Kosanović M, Novak I. Anthocyanin content and antioxidant activity of various red fruit juices. Dtsch Lebensmitt Rundsch. 2007;103(2):58–64.

Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebenson Wiss Technol. 1995;28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Lück H. Peroxidase. In: Bergmeyer HU, editor. Methoden der Enzymatischen Analyse. Weinheim: Verlag Chemie GmbH; 1962. p. 895–897.

Prędka A, Gronowska-Sengera A. Właściwości przeciwutleniające wybranych warzyw z upraw ekologicznych i konwencjonalnych w redukcji stresu oksydacyjnego. Żywność, Nauka, Technologia, Jakość. 2009;4(65):9–18.

Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 2000;23:893–902. https://doi.org/10.1046/j.1365-3040.2000.00611.x

Łata B, Wińska-Krysiak B. Skład chemiczny jarmużu uprawianego na dwóch typach gleby. Acta Agrophysica. 2006;7:663–670.

Sikora E, Bodziarczyk I. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. Acta Sci Pol Technol Aliment. 2012;11:239–248.

Strzałka K. Procesy anaboliczne. In: Kopcewicz J, Lewak S, editors. Fizjologia roślin. Warszawa: Wydawnictwo Naukowe PWN; 2002. p. 331–336.

Ciereszko I. Kontrola metabolizmu sacharozy u roślin w odpowiedzi na zmienne warunki środowiska. Kosmos. 2006;2–3:229–241.

Wojtyla Ł, Adamiec M, Sobieszczuk-Nowicka E. Co rośliny robią zimą? Edukacja Biologiczna i Środowiskowa. 2014;1:3–11.

Korus A. The level of vitamin C, polyphenols and antioxidant and enzymatic activity in three varieties of kale (Brassica oleracea L. var. acephala) at different stages of maturity. Int J Food Prop. 2011;14:1069–1080. https://doi.org/10.1080/10942910903580926

Ligor MM. Badanie substancji biologicznie aktywnych w surowcach roślinnych i produktach naturalnych z zastosowaniem łączonych technik chromatograficznych. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika; 2012.

Korus A, Lisiewska Z. Effect of cultivar and harvest date of kale (Brassica oleracea L. var. acephala) on content of nitrogen compounds. Pol J Environ Stud. 2009;18(2):235–241.

Śniegowska J, Biesiada A. Związki biologicznie czynne i aktywność antyoksydacyjna w wybranych gatunkach warzyw z rodziny Brassicaceae i Asteraceae. Episteme. 2014;22:163–170.

Korus A, Kmiecik W. Content of carotenoids and chlorophyll pigments in kale (Brassica oleracea L. var. acephala) depending on the cultivar and the harvest date. Electronic Journal of Polish Agricultural Universities. 2007;10(1):328.




DOI: https://doi.org/10.5586/aa.1761

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society