Seasonal changes in plant pollen concentrations over recent years in Vinnytsya, Central Ukraine

Victoria Rodinkova, Lilia Kremenska, Olena Palamarchuk, Iryna Motruk, Elena Alexandrova, Oxana Dudarenko, Larysa Vakolyuk, Oleh Yermishev

Abstract


The control of plant pollen season patterns is especially important in the expectation of climate change, as the timing of potential varying pollen seasons affects the human population. An ever-increasing number of people suffer from hay fever symptoms with varying severity during the pollen season. This paper presents data on the seasonal variations of pollen concentration and the factors which are the likely causes of these variations in Vinnytsya, a city in Central Ukraine, in order to establish the apparent pattern of this variation and so improve the efficiency of hay fever control in Ukraine.

Pollen counts were obtained by gravimetric and volumetric methods employing a Hirst-type volumetric spore trap.

Alder (Alnus) and birch (Betula) peaks of pollen release occurred approximately 1 month earlier than was observed at the end of the twentieth century. This was due to the seasonal heat accumulation related to the appropriate temperature regimen registered in January and February prior to the growing season. Other trees – including poplar (Populus), maple (Acer), walnut (Juglans), common hazel (Corylus) – did not show distinct changes in pollen season pattern over the past decades.

Mean daily temperature seems to be the leading factor promoting early season onset and a seasonal pollen peak shift of the grass and herb flora such as ragweed (Ambrosia). The shift of the ragweed seasonal pollen maximum towards later in the season correlated with higher temperatures during September. Our study has shown that droughts may also significantly decrease the ragweed pollen concentration.


Keywords


airborne pollen; pollen season change; temperature increase; heat accumulation

Full Text:

PDF

References


Rodinkova V. Airborne pollen spectrum and hay fever type prevalence in Vinnytsya, central Ukraine. Acta Agrobot. 2015;68(4):383–389. https://doi.org/10.5586/aa.2015.037

D’Amato G, Baena-Cagnani C, Cecchi L, Annesi-Maesano I, Nunes C, Ansotegui I, et al. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip Respir Med. 2013;8(1):12. https://doi.org/10.1186/2049-6958-8-12

Sofiev M, Bergmann KC, editors. Allergenic pollen: a review of the production, release, distribution and health impacts: Dordrecht: Springer; 2013. https://doi.org/10.1007/978-94-007-4881-1

Прокудин [Prokudyn] ЮН [YuN], Вовк [Vovk] АГ [AH], Петрова [Petrova] ОА [OA], Ермоленко [Ermolenko] ЕД [ED], Верниченко [Vernychenko] ЮВ [YuV]. Злаки Украины [Zlaky Ukraynы]. Киев [Kyev]: Наукова Думка [Naukova Dumka]; 1977.

Krasniak, O. Distribution of some species of the tribe Bromeae Dumort. (Poaceae) in Ukraine. Ukrainian Botanical Journal. 2013;70(2):236–237.

Дука [Duka] К [K], Дитятковський [Dytyatkovs”kyj] В [V], Науменко [Naumenko] Н [N]. Сучасний стан спектра сенсибілізації в дітей, хворих на поліноз [Suchasnyj stan spektra sensybilizaciyi v ditej, xvoryx na polinoz]. Здоровье Ребенка [Zdorov”e Rebenka]. 2008;6(15):30–32.

Bonini M, Šikoparija B, Prentović M, Cislaghi G, Colombo P, Testoni C. et al. A follow-up study examining airborne Ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia. 2015;32(2):371–374. https://doi.org/10.1007/s10453-015-9406-2

Rodinkova V, Motruk I, Palamarchuk O. Ragweed areas and preventive measures in Ukraine. European Journal of Aerobiology and Environmental Medicine. 2014;10(2):62.

Prank M, Chapman D, Bullock J, Belmonte J, Berger U, Dahl A, et al. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol. 2013;182–183:43–53. https://doi.org/10.1016/j.agrformet.2013.08.003

Cecchi L, Malaspina TT, Albertini R, Zanca M, Ridolo E, Usberti I, et al. The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia. 2007;23:145–151. https://doi.org/10.1007/s10453-007-9060-4

Sommer J, Smith M, Šikoparija B, Kasprzyk I, Myszkowska D, Grewling Ł, et al. Risk of exposure to airborne Ambrosia pollen from local and distant sources in Europe – an example from Denmark. Ann Agric Environ Med. 2015;22(4):625–631. https://doi.org/10.5604/12321966.1185764

Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, et al. The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol. 2011;55(4):633–644. https://doi.org/10.1007/s00484-010-0376-3

de Weger LA, Pashley CH, Šikoparija B, Skjøth CA, Kasprzyk I, Grewling Ł, et al. The long-distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. Int J Biometeorol. 2016;60(12):1829–1839. https://doi.org/10.1007/s00484-016-1170-7

Earth Science Communications Team. Global Climate Change. Vital Signs of the Planet [Internet]. Global Temperature. 2016 [cited 2016 Aug 8]. Available from: http://climate.nasa.gov/vital-signs/global-temperature

European Environment Agency [Internet]. Global and European temperature. 2016 [cited 2016 Aug 8]. Available from: http://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-

/assessment/#global-and-european-temperature

Bär R, Rouholahnejad E, Rahman K, Abbaspour K, Lehmann A. Climate change and agricultural water resources: a vulnerability assessment of the Black Sea catchment. Environ Sci Policy. 2015;46:57–69. https://doi.org/10.1016/j.envsci.2014.04.008

Frei T, Gassner E. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol. 2008;52(7):667–674. https://doi.org/10.1007/s00484-008-0159-2

Inouye D. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology. 2008;89(2):353–362. https://doi.org/10.1890/06-2128.1

Doran P, Zimmerman M. Examining the scientific consensus on climate change. Earth and Space Science News. 2009;90(3):22–23. https://doi.org/10.1029/2009EO030002

Barnes C, Alexis N, Bernstein J, Cohn J, Demain J, Horner, E et al. Climate change and our environment: the effect on respiratory and allergic disease. J Allergy Clin Immunol Pract. 2013;1(2):137–141. https://doi.org/10.1016/j.jaip.2012.07.002

Melillo J, Terese R, Yohe G, editors. Climate Change Impacts in the United States: The Third National Climate Assessment [Internet]. U.S. Global Change Research Program. 2014 [cited 2016 Aug 8]. Available from: http://nca2014.globalchange.gov/

Gehrig, R. Alnus ×spaethii pollen can cause allergies already at Christmas. Aerobiologia. 2015;31(2):239–247. https://doi.org/10.1007/s10453-014-9360-4

Tuell J, Isaacs R. Weather during bloom affects pollination and yield of highbush blueberry. J Econ Entomol. 2010;103(3):557–562. https://doi.org/10.1603/EC09387

Fletcher A. Trading futures: economism and gender in a changing climate. Int Soc Work. 2015;58(3):364–374. https://doi.org/10.1177/0020872814556825

Mercuri AM, Torri P, Fornaciari R, Florenzano A. Plant responses to climate change: the case study of Betulaceae and Poaceae pollen seasons (Northern Italy, Vignola, Emilia-Romagna). Plants. 2016;5(4):42–54. https://doi.org/10.3390/plants5040042

Ariano R, Canonica G, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol. 2010;104(3):215–222. https://doi.org/10.1016/j.anai.2009.12.005

Cebrino J, Portero de la Cruz S, Barasona MJ, Alcázar P, Moreno C, Domínguez-Vilches E, et al. Airborne pollen in Córdoba City (Spain) and its implications for pollen allergy. Aerobiologia. 2016;33(2):281–291. https://doi.org/10.1007/s10453-016-9469-8

Vuzh TY, Mokin VB, Wójcik W, Imanbek B. Control and minimization of allergenic plants impact on bronchial asthma morbidity, based on spatial-temporal data model. In: Romaniuk RS, Wojcik W, editors. Proceedings SPIE 9816, Optical Fibers and Their Applications; 2015 Dec 17; Lublin and Nałęczów, Poland. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers; 2015. p. 98161M. https://doi.org/10.1117/12.2229083

Эрдтман [Jerdtman] Г [G]. Морфология пыльцы и таксономия растений: введение в палинологию [Morfologija pyl’cy i taksonomija rastenij: vvedenie v palinologiju]. Том 1 [Tom 1]. Москва [Moskva]: Мир [Mir]; 1956.

Rapiejko P. Pollen monitoring in Poland by Allergie Research Center. Ann Agric Environ Med. 1996;3:79–82.

Gamal EG. Reference-slides of pollen grains and spores. Stockholm: Palynological Laboratory Swedish Museum of Natural History; 1998.

Куприянова [Kuprijanova] ЛА [LA], Алешина [Aleshina] ЛА [LA]. Пыльца и споры растений флоры Европейской части СССР [Pyl’ca i spory rastenij flory Evropejskoj chasti SSSR]. Том 1 [Tom 1]. Москва [Moskva]: Наука [Nauka]; 1972.

Куприянова [Kuprijanova] ЛА [LA], Алешина [Aleshina] ЛА [LA]. Пыльца и споры растений флоры Европейской части СССР [Pyl’ca i spory rastenij flory Evropejskoj chasti SSSR]. Том 2 [Tom 2]. Москва [Moskva]: Наука [Nauka]; 1978.

Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39(2):257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

Mozo HG, editor. Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. International Aerobiology Newsletter. 2011;72:1–2.

Jäger S, Nilsson S, Berggren B, Pessi AM, Helander M, Ramfjord H. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. Grana. 1996;35(3):171–178. https://doi.org/10.1080/00173139609429078

Fitter A, Fitter R. Rapid changes in flowering time in British plants. Science. 2002;296(5573):1689–1691. https://doi.org/10.1126/science.1071617

van Vliet AJH, Overeem A, de Groot RS, Jacobs AFG, Spieksma FTM. The influence of temperature and climate change on the timing of pollen release in The Netherlands. Int J Climatol. 2002;22(14):1757–1767. https://doi.org/10.1002/joc.820

Cecchi L, D’Amato G, Ayres J, Galan C, Forastiere F, Forsberg B, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy. 2010;65(9):1073–1081. https://doi.org/10.1111/j.1398-9995.2010.02423.x

Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. Int J Biometeorol. 2016;60(6):843–855. https://doi.org/10.1007/s00484-015-1077-8

Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Frenz D, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci USA. 2011;108(10):4248–4251. https://doi.org/10.1073/pnas.1014107108

Stjepanović B, Svečnjak Z, Hrga I, Večenaj A, Šćepanović M, Barić K. Seasonal variation of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Zagreb, Croatia. Aerobiologia. 2015;31(4):525–535. https://doi.org/10.1007/s10453-015-9384-4

Grewling Ł, Jackowiak B, Nowak M, Uruska A, Smith M. Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (western Poland). Grana. 2012;51(4):280–292. https://doi.org/10.1080/00173134.2012.700727

Nowosad J, Stach A, Kasprzyk I, Weryszko-Chmielewska E, Piotrowska-Weryszko K, Puc M, et al. Forecasting model of Corylus, Alnus and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count. Aerobiologia. 2015;32(3):453–468. https://doi.org/10.1007/s10453-015-9418-y

Sofiev M, Siljamo P, Ranta H, Linkosalo T, Jaeger S, Rasmussen A, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol. 2013;57(1):45–58. https://doi.org/10.1007/s00484-012-0532-z

Rasmussen A. The effects of climate change on the birch pollen season in Denmark. Aerobiologia. 2002;18(3–4):253–265. https://doi.org/10.1023/A:1021321615254

García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, et al. Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med. 2006;13(2):209–224.

Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo M. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol. 2005;49(3):184–188. https://doi.org/10.1007/s00484-004-0223-5

Skjøth C, Bilińska D, Werner M, Malkiewicz M, Groom B, Kryza M, et al. Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wrocław) during 2005–2014. Acta Agrobot. 2015;68(4):315–324. https://doi.org/10.5586/aa.2015.044

Rodriguez-Rajo F, Dopazo A, Jato V. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med. 2004;11(1):35–44.

Rodriguez-Rajo J, Grewling Ł, Stach A, Smith M. Factors involved in the phenological mechanism of Alnus flowering in Central Europe. Ann Agric Environ Med. 2009;16(2):277–284.

García-Mozo H, Mestre A, Galán C. Phenological trends in southern Spain: a response to climate change. Agric For Meteorol. 2010;150(4):575–580. https://doi.org/10.1016/j.agrformet.2010.01.023

Piotrowska K, Kubik-Komar A. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia. 2012;28(4):467–479. https://doi.org/10.1007/s10453-012-9249-z

Myszkowska D. Predicting tree pollen season start dates using thermal conditions. Aerobiologia. 2014;30(3):307–321. https://doi.org/10.1007/s10453-014-9329-3

Rodinkova V, Chirka O, Gelman E, Motruk I, Palamarchuk O. Ragweed pollen sensitivity among children of Central Ukraine. European Journal of Aerobiology and Environmental Medicine. 2014;10(2):78.

Fernández-Llamazares A, Belmonte J, Alarcón M, López-Pacheco M. Ambrosia L. in Catalonia (NE Spain): expansion and aerobiology of a new bioinvader. Aerobiologia. 2012;28(4):435–451. https://doi.org/10.1007/s10453-012-9247-1

Skjøth C, Petersen H, Sommer J, Smith M. Copenhagen: a harbinger for ragweed (Ambrosia) in Northern Europe under climate change? IOP Conf Ser Earth Environ Sci. 2009;6(14):142031. https://doi.org/10.1088/1755-1307/6/14/142031

Deen W, Hunt LA, Swanton CJ. Photothermal time describes common ragweed (Ambrosia artemisiifolia L.) phenological development and growth. Weed Sci. 1998;46(5):561–568.




DOI: https://doi.org/10.5586/aa.1731

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society