Breeding system variability, pollination biology, and reproductive success of rare Polemonium caeruleum L. in NE Poland

Beata Ostrowiecka, Emilia Brzosko, Edyta Jermakowicz, Ada Wróblewska, Paweł Mirski, Katarzyna Roguz, Justyna Ryniewicz, Marcin Zych, Izabela Tałałaj

Abstract


Polemonium caeruleum (Polemoniaceae) represents a very interesting system of compatibility transition. Studies of its biological and ecological properties in the context of the breeding system of various populations may help to understand the evolutionary mechanism of this process. We investigated some aspects of the breeding system, diversity and foraging behavior of the visitors, and relationship between population properties and fruit set in three populations from NE Poland. We found distinct compatibility systems in two studied populations and showed that if a population is self-compatible (SC), selfing is mediated by insects via geitonogamous pollen transfer. Despite the population properties (compatibility, visitor diversity and activity, population size, density, or floral display), P. caeruleum is not pollen limited and pollinators are highly important as a key factor determining the high reproductive success. Visitor assemblages (including key pollinators, bumblebees, and honey bees) and their foraging behavior on inflorescences vary between the populations, which may influence differences in the breeding system. The self-incompatible population was visited by a more diverse group of insects from Hymenoptera, Diptera, Lepidoptera, Heteroptera, and Coeloptera, which may favor effective cross-pollen transfer, whereas the SC population was pollinated mainly by Apis mellifera, which may promote mixed-mating. Studies on a wider range of P. caeruleum populations are needed to determine selective factors responsible for compatibility transition.

Keywords


compatibility system; fruit set; hand-pollination; seed set; visitation rate

Full Text:

PDF

References


Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology. 2004;85:2408–2421. https://doi.org/10.1890/03-8024

Bartkowska MP, Johnston MO. Pollen limitation and its influence on natural selection through seed set. J Evol Biol. 2015;28(11):2097–2105. https://doi.org/10.1111/jeb.12741

van Etten ML, Tate JA, Anderson SH, Kelly D, Ladley JJ, Merrett MF, et al. The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Ann Bot. 2015;116(5):833–843. https://doi.org/10.1093/aob/mcv118

Kalisz S, Vogler D. Benefits of autonomous selfing under unpredictable pollinator environments. Ecology. 2003;84(11):2928–2942. https://doi.org/10.1890/02-0519

Busch JW. The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Am J Bot. 2005;92(9):1503–1512. https://doi.org/10.3732/ajb.92.9.1503

Charlesworth D. Evolution of plant breeding systems. Curr Biol. 2006;16(17):726–735. https://doi.org/10.1016/j.cub.2006.07.068

Barrett SC, Harder LD. Ecology and evolution of plant mating. Trends Ecol Evol. 1996;11(2):73–79. https://doi.org/10.1016/0169-5347(96)81046-9

Kalisz S, Vogler DW, Hanley KM. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature. 2004;430(7002):884–887. https://doi.org/10.1038/nature02776

Barrett SC. The evolution of plant sexual diversity. Nat Rev Genet. 2002;3(4):274–284. https://doi.org/10.1038/nrg776

Ohashi K, Yahara T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct Ecol. 2002;16(4):492–503. https://doi.org/10.1046/j.1365-2435.2002.00644.x

Brys R, Jacquemyn H, Endels P, van Rossum F, Hermy M, Triest L, et al. Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J Ecol. 2004;92(1):5–14. https://doi.org/10.1046/j.0022-0477.2004.00840.x

Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol Rev. 2006;81:219–235. https://doi.org/10.1017/S1464793105006986

Kindlmann P, Jersáková J. Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot. 2006;41(1):47–60. https://doi.org/10.1007/BF02805261

Sargent RD, Ackerly DD. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol. 2008;23(3):123–130. https://doi.org/10.1016/j.tree.2007.11.003

Winfree R, Bartomeus I, Cariveau DP. Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst. 2011;42(1):1–22. https://doi.org/10.1146/annurev-ecolsys-102710-145042

Mustajärvi K, Siikamäki P, Rytkönen S, Lammi A. Consequences of plant population size and density for plant–pollinator interactions and plant performance. J Ecol. 2001;89(1):80–87. https://doi.org/10.1046/j.1365-2745.2001.00521.x

Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B, et al. Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol. 2010;98(1):188–196. https://doi.org/10.1111/j.1365-2745.2009.01590.x

Nattero J, Malerba R, Medel R, Cocucci A. Factors affecting pollinator movement and plant fitness in a specialized pollination system. Plant Syst Evol. 2011;296(1):77–85. https://doi.org/10.1007/s00606-011-0477-4

Zimmerman M. Reproduction in Polemonium: competition for pollinators. Ecology. 1980;61(3):497–501. https://doi.org/10.2307/1937414

Grant V, Grant K. Flower pollination in the Phlox family. New York, NY: Columbia University Press; 1965.

Pigott CD. Polemonium caeruleum L. J Ecol. 1958;46(2):507–525. https://doi.org/10.2307/2257416

Zych M, Stpiczyńska M, Roguz K. Reproductive biology of the red list species Polemonium caeruleum (Polemoniaceae). Bot J Linn Soc. 2013;173(1):92–107. https://doi.org/10.1111/boj.12071

Plitmann U, Levin DA. Breeding systems in the Polemoniaceae. Plant Syst Evol. 1990;170(3):205–214. https://doi.org/10.1007/BF00937704

Hultén E, Fries M. Atlas of North European vascular plants. Königstein: Koeltz Scientific Books; 1986.

Chwil M. The structure of some floral elements and the nectar production rate of Polemonium caeruleum L. Acta Agrobot. 2010;63(2):25–32. https://doi.org/10.5586/aa.2010.029

Stpiczyńska M, Kamińska M, Zych M. Nectary structure in the dichogamous flowers of Polemonium coeruleum L. Acta Biol Crac Ser Bot. 2012;54(2):1–8. https://doi.org/10.2478/v10182-012-0019-6

Holub J, Procházka F. Red list of vascular plants of the Czech Republic – 2000. Preslia. 2000;72:187–230.

Moser D, Gygax A, Baumler B, Wyler N, Palese R. Lista Rossa delle felci e piante a fiori minacciate della Svizzera. Berna: Ufficio Federale dell’Ambiente, delle Foreste e del Paesaggio; 2002. (Ambiente-Esecuzione).

ESRI. ArcGIS desktop: release 10. Redlands, CA: Environmental Systems Research Institute; 2011.

StatSoft Inc. STATISTICA user’s guide. Version 10. Cracow: StatSoft Inc.; 2010.

Waser NM, Price MV. Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped? Am J Bot. 1991;78:1036–1043. https://doi.org/10.2307/2444892

de Jong TJ, Waser NM, Price MV, Ring RM. Plant size, geitonogamy and seed set in Ipomopsis aggregata. Oecologia. 1992;89(3):310–315. https://doi.org/10.1007/BF00317407

Brys R, Jacquemyn H, Hermy M. Pollination efficiency and reproductive patterns in relation to local plant density, population size and floral display in the rewarding Listera ovata (Orchidaceae). Bot J Linn Soc. 2008;157(4):713–721. https://doi.org/10.1111/j.1095-8339.2008.00830.x

Tałałaj I, Brzosko E. Selfing potential in Epipactis palustris, E. helleborine and E. atrorubens (Orchidaceae). Plant Syst Evol. 2008;276(1):21–29. https://doi.org/10.1007/s00606-008-0082-3

Boberg E, Ågren J. Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Funct Ecol. 2009;23(5):1022–1028. https://doi.org/10.1111/j.1365-2435.2009.01595.x

Hill LM, Brody AK, Tedesco CL. Mating strategies and pollen limitation in a globally threatened perennial Polemonium vanbruntiae. Acta Oecol (Montrouge). 2008;33(3):314–323. https://doi.org/10.1016/j.actao.2008.01.009

Johnson SD, Nilsson LA. Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology. 1999;80(8):2607–2619. https://doi.org/10.1890/0012-9658(1999)080%5B2607:PCGATE%5D2.0.CO;2

Nilsson LA. Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc. 1983;87(4):325–350. https://doi.org/10.1111/j.1095-8339.1983.tb00997.x

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc Lond. 2005;84:1–54. https://doi.org/10.1111/j.1095-8312.2004.00400.x

Knuth P. Handbuch der Blütenbiologie, II Band, 2. Teil: Lobeliaceae bis Gnetaceae. Leipzig: Verlag von Wilhelm Engelmann; 1899.

Rutkowski L. Polemonium caeruleum L. Wielosił błękitny. In: Kaźmierczakowa R, Zarzycki K, editors. Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe. Kraków: Instytut Botaniki im. W. Szafera PAN i Instytut Ochrony Przyrody PAN; 2000. p. 310–311.

Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst. 2005;36(1):47–79. https://doi.org/10.1146/annurev.ecolsys.36.091704.175539

Fisogni A, Cristofolini G, Rossi GM, Galloni M. Pollinator directionality as a response to nectar gradient: promoting outcrossing while avoiding geitonogamy. Plant Biol. 2011;13(6):848–856. https://doi.org/10.1111/j.1438-8677.2011.00453.x

Jermakowicz E, Ostrowiecka B, Tałałaj I, Pliszko A, Kostro-Ambroziak A. Male and female reproductive success in natural and anthropogenic populations of Malaxis monophyllos (L.) Sw. (Orchidaceae). Biodiversity: Research and Conservation. 2015;39(1):37–44. https://doi.org/10.1515/biorc-2015-0024

Melen MK, Herman JA, Lucas J, O’Malley RE, Parker IM, Thom AM, et al. Reproductive success through high pollinator visitation rates despite self-incompatibility in an endangered wallflower. Am J Bot. 2016;103(11):1979–1989. https://doi.org/10.3732/ajb.1600193

Ågren J. Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology. 1996;77(6):1779–1790. https://doi.org/10.2307/2265783

Grindeland JM, Sletvold N, Ims RA. Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol. 2005;19(3):383–390. https://doi.org/10.1111/j.1365-2435.2005.00988.x

Geslin B, Gauzens B, Thébault E, Dajoz I. Plant pollinator networks along a gradient of urbanisation. PloS One. 2013;8(5):e63421. https://doi.org/10.1371/journal.pone.0063421

Goulson D. Why do pollinators visit proportionally fewer flowers in large patches? Oikos. 2000;91(3):485–492. https://doi.org/10.1034/j.1600-0706.2000.910309.x

Zimmerman ML. Optimal foraging, plant density and the marginal value theorem. Oecologia. 1981;49:148–153. https://doi.org/10.1007/BF00349181

Waites AR, Ågren J. Pollinator visitation, stigmatic pollen loads and among-population variation in seed set in Lythrum salicaria. J Ecol. 2004;92(3):512–526. https://doi.org/10.1111/j.0022-0477.2004.00893.x

Willmer P. Pollination and floral ecology. Princeton, NJ: Princeton University Press; 2011. https://doi.org/10.1515/9781400838943

Knight TM. Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia. 2003;137(4):557–563. https://doi.org/10.1007/s00442-003-1371-8

Burd M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev. 1994;60(1):83–139. https://doi.org/10.1007/BF02856594

Ghazoul J. Pollen and seed dispersal among dispersed plants. Biol Rev. 2005;80(3):413–443. https://doi.org/10.1017/S1464793105006731

Cheptou PO, Avendaño VLG. Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytol. 2006;172(4):774–783. https://doi.org/10.1111/j.1469-8137.2006.01880.x

Galen C, Stanton ML. Bumble bee pollination and floral morphology: factors influencing pollen dispersal in the alpine sky pilot, Polemonium viscosum (Polemoniaceae). Am J Bot. 1989;76(3):419–426. https://doi.org/10.2307/2444612

Groom MJ. Allee effects limit population viability of an annual plant. Am Nat. 1998;151(6):489–496. https://doi.org/10.1086/286135




DOI: https://doi.org/10.5586/aa.1709

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society