Reconstruction of late spring phenophases in Poland and their response to climate change, 1951–2014

Bartosz Czernecki, Katarzyna Jabłońska

Abstract


Phenology is primarily seen as an indicator of the impacts of climate change. The strongest biological signal of climatic change is revealed by phenological data from the period after 1990. Unfortunately, the Polish nationwide network of phenological monitoring was terminated in 1992, and was only reactivated in 2005. Here, we attempt to reconstruct late spring phenophases of flowering of Syringa vulgaris L. and Aesculus hippocastanum L. across several sites in Poland from 1951 to 2014 using the GIS-based approach (if observations from neighboring stations were available) and multiple regression modeling with stepwise screening and bootstrap resampling. It was found that the air temperature and its indices explain over 60% of the variance, giving an accuracy of 3.0–3.4 days (mean absolute error) and correlation coefficients of 0.83 and 0.78 for lilac and horse chestnut, respectively. Altogether, both plant species showed a statistically significant advancement in the onset of flowering with an average rate of 1.7 days per decade. We also found that the final trend is the result of rapid acceleration of the increase in air temperature after the 1990s, while most of the trends for late spring were ambiguous before that period.

Keywords


climate change; plant phenology; phenology modeling; phenological reconstruction; Syringa vulgaris; Aesculus hippocastanum; Poland

Full Text:

PDF

References


Ahas R. Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol. 1999;42:119–123. http://dx.doi.org/10.1007/s004840050094

Bradley NL, Leopold AC, Ross J, Huffaker W. Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA. 1999;96(17):9701–9704. http://dx.doi.org/10.1073/pnas.96.17.9701

Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H, Changes in European spring phenology. Int J Climatol. 2002;22:1727–1738. http://dx.doi.org/10.1002/joc.818

Root TL, Price JT, Hall KR, Schneider KR, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature. 2003;421:57–60. http://dx.doi.org/10.1038/nature01333

Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Aha R, et al. European phenological response to climate change matches the warming, Glob Chang Biol. 2006;12:1969–1976. http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x

Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S. 2006;37:637–669. http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100

Schleip C, Menzel A, Dose V. Bayesian methods in phenology. In: Hudson IL, Keatley MR, editors. Phenological research. Dordrecht: Springer; 2010. p. 229–254. http://dx.doi.org/10.1007/978-90-481-3335-2_11

Aono Y, Kazui K. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol. 2008;28:905–914. http://dx.doi.org/10.1002/joc.1594

Schleip C, This R, Luterbacher J, Menzel A. Time series modeling and Central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res. 2008;113:G04026. http://dx.doi.org/10.1029/2007JG000646

Koch E, Maurer C, Hammerl C, Hammerl T, Pokorny E. BACCHUS grape harvest days and temperature reconstruction for Vienna from the 16th to the 18th century. In: Anderssen RS, Braddock RD, Newham LTH, editors. Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation; 2009 Jul 13–17; Cairns, Australia. Christchurch: Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation; 2009. p. 2632–2638.

Bradley RS. Paleoclimatology: reconstructing climates of the quaternary. 3rd ed. Amsterdam: Elsevier; 2014.

Zheng J, Hua Z, Liu Y, Hao Z. Temperature changes derived from phenological and natural evidences in South Central China from 1850 to 2008. Climate of the Past. 2015;11:4077–4095. http://dx.doi.org/10.5194/cp-11-1553-2015

Cybulski H. Średnie wypadki spostrzeżŜeń fitofenologicznych, poczynione w Ogrodzie Botanicznym w Warszawie od roku 1865 do 1885. Pamiętnik Fizjograficzny. 1886;6:65–83.

Tomaszewska T, Przedpełska W. Dzieje agrometeorologii w Państwowej Służbie Meteorologicznej [Manuscript]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej; 1989.

Obrębska-Starklowa B. O badaniach fitofenologicznych w Galicji w XIX wieku (na tle rozwo­ju fenologii w Europie). Przeglad Geofizyczny. 1993;3–4:289–296.

Falińska K. Seasonal dynamics of forest undergrowth in Bialowieża National Park. Phytocenosis. 1973;1:3–115.

Jabłońska K, Rapiejko P. Using the results of a nationwide phenological network to examine the impact of changes in phenology of plant species on the concentration of plant pollen in the air. Acta Agrobot. 2010;63(2):69–74. http://dx.doi.org/10.5586/aa.2010.034

Schaber J, Badeck FW. Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol. 2002;22:973–982. http://dx.doi.org/10.1093/treephys/22.14.973

Fitter A, Fitter R. Rapid changes in flowering time in British plants. Science. 2002;296:1689–1691. http://dx.doi.org/10.1126/science.1071617

Hudson IL, Keatley MR. Phenological research. Dordrecht: Springer; 2010. http://dx.doi.org/10.1007/978-90-481-3335-2

Jabłońska K, Kwiatkowska-Falińska A, Czernecki B, Walawender J. Changes in spring and summer phenology in Poland – responses of selected plant species to air temperature variations. Pol J Ecol. 2015;63:311–319. http://dx.doi.org/10.3161/15052249PJE2015.63.3.002

Meier U. Growth stages of mono- and dicotyledonous plants: BBCH monograph. Berlin: Blackwell Wissenschafts-Verlag; 1997.

Fitter AH, Fitter RS, Harris IT, Williamson MH. Relationship between first flowering date and temperature in the flora of a locality in central England. Funct Ecol. 1995;9:55–60. http://dx.doi.org/10.2307/2390090

Sparks TH, Carey PD. The responses of species to climate over two centuries: an analysis of the Marsham phenological record. J Ecol. 1995;83:321–329. http://dx.doi.org/10.2307/2261570

Rutishauser T, Luterbacher J, Jeanneret F, Pfister C, Wanner H. A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res. 2007;112:G04016. http://dx.doi.org/10.1029/2006JG000382

Szabo B, Vincze E, Czúcz B. Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol. 2016. http://dx.doi.org/10.1007/s00484-015-1128-1

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res Atmos. 2008;113:D2011. http://dx.doi.org/10.1029/2008JD010201

Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. Int J Biometeorol. 2016;60(6):843–855. http://dx.doi.org/10.1007/s00484-015-1077-8

Ustrnul Z, Czekierda D, Application of GIS for the development of climatological air temperature maps: an example from Poland. Meteorological Applications. 2005;12:43–50. http://dx.doi.org/10.1017/S1350482705001507

Czernecki B, Miętus M. The thermal seasons variability in Poland, 1951–2010. Theor Appl Climatol. 2015. http://dx.doi.org/10.1007/s00704-015-1647-z

Szymanowski M, Kryza M. The role of auxiliary variables in deterministic and deterministic-stochastic spatial models of air temperature in Poland. Pure and Applied Geophysics. 2015. http://dx.doi.org/10.1007/s00024-015-1199-2

Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26. http://dx.doi.org/10.18637/jss.v028.i05

Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer; 2013. http://dx.doi.org/10.1007/978-1-4614-6849-3

Yeo IK, Johnson R. A new family of power transformations to improve normality or symmetry. Biometrika. 2000;87:954–959. http://dx.doi.org/10.1093/biomet/87.4.954

Kuhn M. caret: classification and regression training [Internet]. 2016 [cited 2016 Jun 3]. Available from: http://cran.r-project.org/package=caret

Sakamoto, Y, Ishiguro M, Kitagawa G. Akaike information criterion statistics. Tokyo: KTK Scientific Publishers; 1986.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.

Pebesma EJ. Multivariable geostatistics in S: the gstat package. Comput Geosci. 2004;30:683–691. http://dx.doi.org/10.1016/j.cageo.2004.03.012

Taylor KE. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos. 2001;106(D7):7183–7192. http://dx.doi.org/10.1029/2000JD900719

Wilks DS. Statistical methods in the atmospheric sciences. 3rd ed. Oxford: Academic Press; 2011. (International Geophysics Series; vol 100).

Mann HB. Nonparametric tests against trend. Econometrica. 1945;13:254–259. http://dx.doi.org/10.2307/1907187

Kendall MG. Rank correlation methods. 4th ed. London: Griffin; 1975.

Menzel A. Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol. 2000;44:76–81. http://dx.doi.org/10.1007/s004840000054

Sparks T, Menzel A. Observed changes in seasons: an overview. Int J Climatol. 2002;22(14):1715–1725. http://dx.doi.org/10.1002/joc.821

Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modell. 2003;160(3):249–264. http://dx.doi.org/10.1016/S0304-3800(02)00257-0

Rötzer T, Wittenzeller M, Häckel H, Nekovar J. Phenology in Central Europe – differences and trends of spring-phenophases in urban and rural areas. Int J Biometeorol. 2000;44:60–67. http://dx.doi.org/10.1007/s004840000062

Thompson R, Clark RM. Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods. Int J Biometeorol. 2006;50:312–322. http://dx.doi.org/10.1007/s00484-005-0017-4

Siljamo P, Sofiev M, Ranta H, Linkosalo T, Kubin E, Ahas R, et al. Representativeness of pointwise phenological Betula data collected in different parts of Europe. Glob Ecol Biogeogr. 2008;17(4):489–502. http://dx.doi.org/10.1111/j.1466-8238.2008.00383.x

Intergovernmental Panel on Climate Change, Working Group II. Climate change 2007: impacts, adaptation and vulnerability. Geneva: IPCC Secretariat; 2008.

Scheifinger H, Menzel A, Koch E, Peter C, Ahas R. Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. Int J Climatol. 2002;22:1739–1755. http://dx.doi.org/10.1002/joc.817

Sparks T, Tryjanowski P. The detection of climate impacts: some methodological considerations. Int J Climatol. 2005;25(2):271–277. http://dx.doi.org/10.1002/joc.1136

Chmielewski FM, Rötzer T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research. 2002;19:257–264. http://dx.doi.org/10.3354/cr019257