
Acta Agrobotanica

Article ID: 743
DOI: 10.5586/aa.743

Publication History
Received: 2020-01-27
Accepted: 2021-02-06
Published: 2021-05-14

Handling Editor
Iwona Ciereszko; University of
Bialystok, Poland;
https://orcid.org/0000-0003-
2694-7991

Authors’ Contributions
AK and MRU contributed to the
design of the experiments;
MRU conducted the
experiments; MMI, AKB, MIHJ,
and SA contributed to the
conduction of the experiments;
AK, MN, and MRU analyzed the
data; MRU and MN wrote the
manuscript; PSB arranged the
references and edited the
manuscript; AK carried out and
coordinated the overall study
and edited the manuscript
intensively

Funding
All authors are thankful to the
government of Bangladesh for
funding this research through
the “Research and Development
(R&D)” research fund (ID: 6911),
of the Ministry of Science and
Technology, Bangladesh.

Competing Interests
No competing interests have
been declared.

Copyright Notice
© The Author(s) 2021. This is an
open access article distributed
under the terms of the Creative
Commons Attribution License,
which permits redistribution,
commercial and
noncommercial, provided that
the article is properly cited.

ORIGINAL RESEARCH PAPER in PHYSIOLOGY

Boron Facilitates Rice Growth,
Development, and Related Attributes
Under Saline Soil Conditions
Md. Rasel Uddin

 

 

1, Mohammed Nuruzzaman
 

 

1,
Preangka Saha Briste

 

 

2, Md. Morshedul Islam
 

 

1,
Ashik Karim Bhuiyan

 

 

1, Md. Istiak Hossain Joy
 

 

1,
Shakil Ahmed

 

 

1, Amena Khatun
 

 

1*

1Department of Agriculture, Faculty of Science, Noakhali Science and Technology University,
Bangladesh
2Department of Plant Pathology, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman
Agricultural University, Bangladesh

* To whom correspondence should be addressed. Email: rupabsmrau@yahoo.com

Abstract
Salinity is a severe environmental threat causing low productivity in field crops.
Rice is a staple crop of the world whose yield and quality is highly affected by the
salt content in the root zone. Nutrient management, however, is a key factor that
can be used to boost rice production in saline soils. Boron (B), a micronutrient
with diverse functions, plays a significant role in rice yield. However, little is
known about the effects of B under saline conditions on the yield of rice
components. ‘Swarna,’ is a local and salt-sensitive rice variety from Bangladesh.
A field experiment was conducted in salt-treated soils to assess the possible
functions of B for the improvement of ‘Swarna’ yield. e current study showed
that B applications substantially improved the length and weight of panicles,
number of tillers and grains, seed weight as well as the yield of grain and straw,
indicating its role in rice production in saline environments.

Keywords
rice ‘Swarna’; micronutrient; saline soil; day aer transplanting (DAT)

1. Introduction

Micronutrients, which play key roles in plant growth and development, are
decreasing in our soils because of an increasing dependence on inorganic fertilizers
(Vatansever et al., 2017). When micronutrients are relatively short in supply, plant
growth and yield are severely decreased (Rouached & Tran, 2015). Among the
micronutrients boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu),
molybdenum (Mo), and chlorine (Cl), B is considered essential for high and quality
crop yields, including rice (Huang et al., 2017; A. Kumar et al., 2016). Boron plays a
key role in tissue growth, and its shortage limits or inhibits plant growth at both the
vegetative and reproductive stage (Shireen et al., 2018). Recently, B deficiency in the
soil has been detected as a grave agricultural issue, leading to reductions in rice
productivity (Bhattarai & Midmore, 2009; Zhu et al., 2018). At the same time, the
accumulation of soluble salts in the soil or water is another major threat for plants,
leading to a reduction in crop profits for growers (Ventura et al., 2015).
Approximately one-third of irrigated lands globally suffer from problems due to
salinity (Munns & Gilliham, 2015). e salinization of crop lands can occur via
four major processes: groundwater salt rising by capillary action, irrigation with
salt water, salt sedimentation through rain, and wind-blown salt (Ding et al., 2012;
Upadhyay & Singh 2015). Micronutrient availability depends on the salinity of the
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soil environment, soil texture, pH, CaCO3, and organic matter (Matijevic et al.,
2014; Najib et al., 2017; Xie et al., 2015). At low salt concentrations, crop yields
were found to be either mildly affected or not affected at all, whereas the
yields of most crops were severely affected at high salt concentrations
(Farhangi-Abriz & Nikpour-Rashidabad, 2017; Hassanein et al., 2020; Zamani
et al., 2019). A significant decrease in the productivity of rice (Pires et al., 2015;
M. Hussain et al., 2018), wheat (Feizi et al., 2007), maize (Baghel et al., 2019;
K. Kumar et al., 2017), barley (Tavakkoli et al., 2011), and sunflower
(Farghaly et al., 2016; Flowers & Colmer, 2015) was reported with increased
soil salinity.
Rice, a major staple crop, was reported to be moderately salt tolerant (Kalita & Tanti,
2020; V. Kumar et al., 2015). Boron has been found to help several crops to cope with
salt stress in saline soils (Flowers & Colmer, 2015; Zhao et al., 2019). However, high
concentrations of B in saline soils inhibit plant growth and reduce their yields.
e reduction in plant growth at elevated B levels is due to efficient B uptake with the
higher levels of Na+ in saline soils (Martinez-Ballesta et al., 2008). erefore, rice
growers should apply the correct amount of B fertilizer to optimize the negative
effects of salinity to some extent on water, as well as the uptake of nutrients (Moraes
et al., 2015). Previous studies have evaluated the importance of B and its role in
regulating different biological systems (Mosa et al., 2016; Uluisik et al., 2018).
However, the role of B in mitigating salinity and enhancing rice yield components
still needs to be evaluated. is study was undertaken in the coastal region of
Bangladesh, to determine the effects of B soil applications on the growth,
development, and yield-related attributes of the rice variety ‘Swarna,’ under saline
soil conditions. To the best of our knowledge, this is the first study on B applications
in saline soils to determine the effects on the locally important rice variety ‘Swarna,’
and will provide useful information for further research to improve the performance
of this variety and other related species.

2. Material andMethods

2.1. Location of the Study

e study was carried out in a net house, using a number of glazed pots, at Noakhali
Science and Technology University, Noakhali, Bangladesh, during the Australia
season of 2019. e soil was collected from the areas around Bangla Bazar,
Dharmapur Union, Sadar, Noakhali, Bangladesh, located near Noakhali Science and
Technology University. e soil used in the experiment was sandy loam in texture
with a pH of 6.5.

2.2. Soil Sampling

e soil was examined and then sent to the Soil Resource Development Institute
(SRDI), Khamar Bari, Dhaka, Bangladesh, to test its electrical conductivity (EC),
a measure of the concentration of soluble salts in the soil, as well as to assess the
other nutrients that were present (Table 1).

2.3. Collection of Soil for Nonsaline and Saline Soil Preparation, and Pot
Preparation

e nonsaline soil sample, with an EC of 3.9 dS/m and pH of 6.5, was collected from
the fields and placed on polythene sheets for air drying. e soil was air-dried for 10
days. Ten kilograms (10 kg) of the air-dried soil was placed in pots that were 20 cm
deep and 25 cm in diameter. Each of the pots was filled with 10 kg of pretreated soil.
However, saline soil (EC 9.0 dS/m) was puddled before the transplantation of rice
seedlings. Nitrogen was applied as urea at the rate of 130 kg ha−1 in three equal split
doses, i.e., at time of transplantation, 20, and 45 days aer transplantation (DAT),
respectively. A basal dose of phosphorus (30 kg P2O5) and potassium (55 kg K2O)
was applied as single super phosphate (SSP) and sulphate of potash, respectively, on
a per hectare basis during puddling. Boron was also applied as solubor at the rate of
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Table 1 Physical and chemical properties of the soil before starting the experiment.

Measured parameters Corresponding value

pH 6.5
Total nitrogen (%) 0.011
Electrical conductivity (EC) in dS/m 3.9
Exchangeable cation (meq/100 g) K 0.27

Ca 25.62
Mg 8.26

Microgram/gram (ppm) P 9.01
S 155.45
B 0.43
Zn 2.27
Fe 29.36
Mn 31.14

4.5, 5.9, 7.5, and 10.0 kg B ha−1 during puddling. All other agronomic practices were
continued as usual.

2.4. Planting Materials

In the experiment, 28-day-old seedlings of the rice cultivar ‘Swarna’ were raised in B
free soil and thinned to four seedlings per pot. Two seedlings were then planted in
each raised mound of soil, called a hill, within the pots. e soil was kept submerged
by applying water daily.

2.5. Experiment Design and Treatments

e following six treatments were applied to determine the effects of B on the growth
and development of ‘Swarna’ rice in salt-rich soils:
• T0: Saline condition of EC 9.0 dS/m + no additional boron;
• T1: No saline condition + no additional boron;
• T2: Saline condition of EC 9.0 dS/m + B as solubor at the rate of 4.5 kg B ha−1;
• T3: Saline condition of EC 9.0 dS/m + B as solubor at the rate of 5.9 kg B ha−1;
• T4: Saline condition of EC 9.0 dS/m + B as solubor at the rate of 7.5 kg B ha−1;
• T5: Saline condition of EC 9.0 dS/m + B as solubor at the rate of 10 kg B ha−1.

e doses of B were measured to meet the desired dose levels of medium (T2),
moderate (T3), high (T4), and very high (T5), in the experimental pot soil.

2.6. Data Collection

Data for the plant growth parameters, including plant height and number of effective
tillers, was observed at 30, 45, and 60 DAT. Panicle length, number of filled grains,
number of sterile grains, total weight, panicle weight, grain weight, straw weight, and
1,000-grain weight were recorded during harvesting.

2.7. Statistical Analysis

Data were analyzed using SPSS statistical soware (version 20.0; SPSS Inc., Chicago,
IL, USA). One-way ANOVA was utilized to observe the comparison of the means
of the treatment groups. Post hoc analysis (Tukey’s test) was applied to assess
whether specific groups significantly varied from each other in maintaining alpha
levels and statistical assumptions for normality. For significant differences to be
examined, consistent and reasonable variation in magnitude, among the normal soil
condition, control, as well as treatments, was necessary; p ≤ 0.05 was considered
statistically significant. Numerical data are presented as means ± standard error of
the mean (SEM).
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Figure 1 Influences of boron in saline conditions on the plant height of the rice ‘Swarna.’ (A) 30 DAT; (B) 45 DAT; and (C) 60 DAT.
T0: Saline condition, EC = 9.0 dS/m + no additional boron; T1: No saline condition + no additional boron; T2: Saline condition of
EC 9.0 dS/m + boron application as solubor at a rate of 4.5 kg B ha−1; T3: Saline condition of EC 9.0 dS/m + boron application as
solubor at a rate of 5.9 kg B ha−1; T4: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 7.5 kg B ha−1;
T5: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 10 kg B ha−1. Data are the means of four replicates ±
SEM. All data were analyzed by one-way analysis of variance. Tukey’s test was used to identify the differences between treatments.
Values with different superscript characters (A, B, C) are significantly different (p < 0.05).

3. Results

3.1. Effects of B Applications on Different Stages of Rice Growth Under Saline
Conditions

3.1.1. Plant Height

Boron applications had no significant effect on the height of ‘Swarna’ (Figure 1).
Based on the recorded plant heights at 30, 45, and 60 DAT, no significant difference
was observed aer the boron application.

3.1.2. Number of Tillers

e number of tillers is generally influenced by the surroundings, plant nutrients,
and genotype of the respective plant (S. Hussain et al., 2019). e moderate (T3) and
high dose (T4) B applications significantly enhanced the number of tillers per hill
compared to the control, at both 45 and 60 DAT (Figure 2). e study showed that
T0 showed an average tiller number of 9.25, 9.25, and 10 at 30, 45, and 60 DAT,
respectively. However, in both the moderate and high dose B treated plants, the
average tiller number was 12.25 and 13, respectively, at 60 DAT.

3.2. Effect of B on Yield Components of Rice Under Saline Conditions

3.2.1. Panicle Length

Panicle length was meaningfully influenced by the different doses of boron.
Various lengths of panicle ranging from 22.02 cm to 25.84 cm were found with

Acta Agrobotanica / 2021 / Volume 74 / Article 743
Publisher: Polish Botanical Society

4



Uddin et al. / Boron in Rice Cultivation in Saline Environments

Figure 2 Influence of boron in saline conditions on the number of tillers per hill for the rice ‘Swarna.’ (A) 30 DAT; (B) 45 DAT; and
(C) 60 DAT. T0: Saline condition, EC = 9.0 dS/m + no additional boron; T1: No saline condition + no additional boron; T2: Saline
condition of EC 9.0 dS/m + boron application as solubor at a rate of 4.5 kg B ha−1; T3: Saline condition of EC 9.0 dS/m + boron
application as solubor at a rate of 5.9 kg B ha−1; T4: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of
7.5 kg B ha−1; T5: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 10 kg B ha−1. Data are the means of
four replicates ± SEM. All data were analyzed by one-way analysis of variance. Tukey’s test was used to identify the differences
between treatments. Values with different superscript characters (A, B, C) are significantly different (p < 0.05).

increasing B dose. e highest panicle length of 25.84 cm was recorded in T3
(moderate B), while the lowest length of 22.02 cm was detected in T0 (Figure 3A).

3.2.2. Number of Filled Grains

e number of filled grains per panicle is a principal yield determinant.
A considerable variation from 498.25 to 1,067.50 was observed in the number of
filled grains per plant owing to various B treatments. e maximum number of filled
grains, 1,067.50, was produced in T3, which was significantly higher than that of T0
and T1 (Figure 3B).

3.2.3. Number of Sterile Grains

e number of sterile grains varied from 21.75 to 121.5 among all treated plants.
All B treated rice plants (T2, T3, T4, and T5) showed significantly lower numbers of
sterile grains per plant compared to that of the controls (T0 and T1; Figure 3C).

3.2.4. Number of Effective Tillers

e number of effective tillers was measured, and the results showed no significant
difference between the control and treatments. However, the highest number of
effective tillers was recorded as nine in T2 (moderate boron treatment), whereas the
lowest number was recorded as 7.5 in T0 (control; Figure 3D).

3.2.5. Thousand-SeedWeight

e 1,000-seed weight varied from 21.21 g to 26.36 g among the various B treatment
plants. Significantly higher 1,000-seed weights were recorded as 26.36 g and 25.87 g
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Figure 3 Panicle height (cm) (A), number of filled grains per plant (B), number of sterile grains per plant (C), and effective tiller
number (D), as influenced by boron in saline conditions. T0: Saline condition, EC = 9.0 dS/m + no additional boron; T1: No saline
condition + no additional boron; T2: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 4.5 kg B ha−1; T3:
Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 5.9 kg B ha−1; T4: Saline condition of EC 9.0 dS/m +
boron application as solubor at a rate of 7.5 kg B ha−1; T5: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate
of 10 kg B ha−1. Data are the means of four replicates ± SEM. All data were analyzed by one-way analysis of variance. Tukey’s test
was used to identify the differences between treatments. Values with different superscript characters (A, B, C) are significantly
different (p < 0.05).

in the T2 and T4 treatments, respectively, whereas the lowest weight of 21.88 g was
observed in the control (T0; Figure 4A).

3.2.6. PanicleWeight, StrawWeight, and Total Weight

Panicle weight, including grain weight, was significantly higher in T2 (23.96 g) and
T3 (21.84 g) when compared to the controls T0 (13.96 g) and T1 (19.04). However,
no significant difference was observed between T1 and T3 (moderate B) (Figure 4B).
Besides, straw weight was also measured, and the results showed that high B
treatment (T4) significantly increased the total straw weight compared to that of the
control and all other treatments (Figure 4C). In addition, the total weight of the
plants per pot was measured and T2 treatment showed significant difference when
compared to the control (Figure 4D).

3.2.7. Total Grain and Straw Yields

Results in Table 2 show that the grain yield ranged from 11.21 g to 21.89 g per hill;
the highest grain yield of 21.89 g was found in T2 (moderate B) and the lowest of
11.21 g in T0. On the other hand, the straw yield ranged from 17.09 g to 26.97 g per
hill, due to different treatments of boron; it was significantly higher in T2 (22.92 g),
T4 (26.97), and T5 (23.55), compared to T0 (17.09) and T1 (18.56).

4. Discussion

Boron is an important micronutrient, that has a pivotal role in stimulating plant
growth and development (Mosa et al., 2016). Boron deficiency has been reported as
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Figure 4 Total 1,000-seed weight (g) (A), panicle weight including grains (g) (B), total straw yield (g) (C), and total weight of straw,
panicle, and grain (g) (D) for the rice ‘Swarna,’ influenced by boron in saline conditions. T0: Saline condition of EC 9.0 dS/m + no
additional boron applied; T1: No saline condition + no additional boron applied; T2: saline condition of EC 9.0 dS/m + boron
application as solubor at a rate of 4.5 kg B ha−1; T3: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of
5.9 kg B ha−1; T4: saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 7.5 kg B ha−1; T5: saline condition of
EC 9.0 dS/m + boron application as solubor at a rate of 10 kg B ha−1. Data are the means of four replicates ± SEM, while (A) shows
the mean of three replicates ± SEM. All data were analyzed by one-way analysis of variance. Tukey’s test was used to identify the
differences between treatments. Values with different superscript characters (A, B, C) are significantly different (p < 0.05).

Table 2 Grain and straw yields of the rice ‘Swarna’ influenced by different treatments of B under saline conditions.

Treatment Grain yield (g/hill) Increase over control (%) Straw yield (g/hill) Increase over control (%)

T0 (11.21 ± 0.88) A - (17.09 ± 1.18) A -
T1 (15.35 ± 2.54) A, B - (18.56 ± 2.70) A -
T2 (21.89 ± 1.10) C 42.61 (22.92 ± 2.01) B 23.49
T3 (19.56 ± 1.05) B, C 27.43 (19.91 ± 2.37) A, B 7.26
T4 (17.03 ± 2.46) B 10.95 (26.97 ± 5.24) C 45.31
T5 (14.72 ± 2.41) A, B - (23.55 ± 2.32) B 26.89

Data are the means of four replicates ± SEM. All data were analyzed by one-way analysis of variance. Tukey’s test was used to identify the differences
between treatments. Values with different superscript characters (A, B, C) indicate significant difference (p < 0.05).

a severe agricultural issue in more than 80 countries, for over 100 crops, in the last
couple of decades (Atique-ur-Rehman et al., 2018). Deficiency of B can be readily
corrected by soil applications of B fertilizers (Shorrocks, 1997). On the other hand,
salt stress is one of the major agricultural problems that reduces crop yields by
affecting the soil, water, and nutrient balance of plants (Guo et al., 2016; Nam et al.,
2017; Paul & Lade, 2014). Around 20% of total agricultural lands and 50% of
croplands in the world are reported to be salt stressed (Pitman & Läuchli, 2002).
Although maximum salinity occurs in arid and semi-arid regions, salinity was
identified in nearly all climatic zones.
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Rice is an important and widely grown cereal crop whose agronomic productivity is
adversely affected by salinity (Nieves-Cordones et al., 2016). erefore, it is
important to elucidate possible strategies for cultivating rice in saline soils to
improve its performance. In our experiment, although ‘Swarna’ showed different
sensitivities to salt treatments, overall B applications in saline environments
substantially improved the yield-related components of rice. In this study, the
maximum number of tillers at various growth stages were found to be different
between the treatments and control (Figure 2). e highest panicle lengths were
recorded in the saline soils treated with low, medium, and very high amounts of B,
supporting the findings of Shahid et al. (2018). is previous study also reported that
B treatments improved vegetative and reproductive growth under abiotic stress
conditions at high temperatures. erefore, higher panicle lengths can result from
boron applications, which, under saline conditions, mitigates abiotic saline stress.
However, further experiments are required to understand the mechanisms of B in
decreasing salt stress.
In another study, it was shown that the use of B at the heading or flowering stage
yielded a higher number of grains per panicle (M. Hussain et al., 2012). In the
current study, the highest number of filled grains (1,067.50) was from T3 and the
lowest number (498.25) was from the saline soil (T0), indicating that B along with
saline soil has a positive effect on rice. e reason for the minimum filled grain yield,
and high pollen infertility in B deprived soil (T0) may be due to salt stress and B, in
this case, may play a key role in these processes. At the same time, the maximum
number of sterile grains (121.5) from T0 and the minimum number of sterile grains
(21.75) from T3, under saline conditions, is also appreciable here. Moreover, a
previous study reported that rice yields under salinity declined due to the decrease in
spikelets owing to their malformation and degeneration (Radanielson et al., 2018).
On the other hand, the highest panicle weight of 23.96 g in the T2 treatment and the
lowest panicle weight of 13.27 g in the control T0 indicates that salinity, along with B
application, might have played a role in enhancing spikelet formation. e highest
total weight of straw, including panicles and grains, in T2 was found to be
significantly higher (43.54 g) than in T0 (27.26 g) and T1 (32.90 g). Besides, the

Figure 5 Photograph of the rice ‘Swarna’ influenced by boron under saline conditions. T0: Saline condition of EC 9.0 dS/m + no
additional boron applied; T1: No saline condition + no additional boron applied; T2: Saline condition of EC 9.0 dS/m + boron
application as solubor at a rate of 4.5 kg B ha−1; T3: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of
5.9 kg B ha−1; T4: Saline condition of EC 9.0 dS/m + boron application as solubor at a rate of 7.5 kg B ha−1; T5: Saline condition of
EC 9.0 dS/m + boron application as solubor at a rate of 10 kg B ha−1.
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highest number of effective tillers was from T2 (9.0) and the lowest number was
from T4 and T0 (7.25), and these results were in accordance with the findings of
Mackill (2007) and Rerkasem et al. (1993), who corroborated that high salinity
negatively affects the number of effective tillers. Based on this study, it is tempting to
speculate that B applications might enhance the tiller number of salt-stressed rice
plants. On the other hand, the maximum 1,000-grain weight of 26.36 g from the T2
treatment and the minimum weight of 21.21 g from the control (T0), were in
agreement with M. Hussain et al. (2012), who reported that the 1,000-grain weight
may increase due to the application of boron. e highest grain yield of 21.89 g in
the T2 treatment and lowest grain yield of 11.21 g in the control T0 indicate that
grain yields significantly increase with increasing B applications, under saline soil
conditions (Table 2); this is in consonance with Rerkasem et al. (1993). Straw yields
in the saline environment increased by approximately 45% when compared to the
control due to the application of B. Based on these findings, the present study
concludes that medium (T3) or high (T4) levels of B applications to saline soils
improves the soil as well as the panicle weight, total weight, effective tiller number,
and grain yield (Figure 5). Total weight of 1,000 seeds and straw were improved with
the application of the treatment of high (T4) dose of B. However, moderate (T3)
levels of boron application positively affected the growth and yield, especially for the
panicle length, filled grain, and number of sterile grains, in all conditions. It seems
that the enhancement in growth and development of rice ‘Swarna’ might be due to
the fulfillment of B requirements, resulting in super pollination, grain structure, as
well as seed setting.
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