Z badań nad występowaniem opieńkowej zgnilizny korzeni drzew w młodych drzewostanach sosnowych Nadleśnictwa Zielonka

WOJCIECH SZEWCZYK, MAŁGORZATA MAŃKA

Katedra Fitopatologii Leśnej AR w Poznaniu, ul. Wojska Polskiego 71c, 62-625 Poznań
Szewczyk W., Mańska M. (Department of Plant Pathology, Poznań Agricultural University, Wojska Polskiego 71c, 62-625 Poznań, Poland). From the investigations on Armillaria root rot occurrence in young Scots pine stands in Zielonka Forest District.

(Otrzymano dn. 18 czerwca 2002)

Summary

Armillaria root rot, one of the most dangerous diseases in our forests, is caused in Poland mainly by Armillaria ostoyae, especially severe in young Scots pine stands, established after broadleaved stands or with participation of broadleaved species. In Forest District Zielonka young stands are severly affected by Armillaria root rot. Only one species, A. ostoyae, was found in the young (8-14 yrs) Scots pine stands, despite the presence of other Armillaria species in the district. The pathogen’s frequent occurrence may be due, inter alia, to favouring environmental factors.

Key words: Armillaria root rot, Scots pine, Poland.

WSTĘP

Opieńkowa zgnilizna korzeni jest jedną z najgroźniejszych chorób drzew w naszych lasach. Obecność gatunków z rodzaju Armillaria stwierdza się w korzeniach 90% zamierających dębów, świerków, buków, i sosen na terenie niemal całego kraju (Kolka i in., 1994). Największe znaczenie ma w Polsce Armillaria ostoyae (Romagn.) Herink (opieńka ciemna), szczególnie szkodliwa w uprawach sosnowych zakładanych na powierzchniach po drzewostanach liściastych lub z udziałem gatunków liściastych. Powierzchnia, na której występuje w Polsce choroba w ostatnich latach, oszacowana została na ponad 144 tys. ha (Kolka i in., 2000).

Nadleśnictwo Zielonka jest mocno dotknięte opieńkową zgnilizną korzeni, występującą szczególnie w uprawach i młodnikach. Według informacji ustnych leśników pracujących na tym terenie nasilenie choroby zatrzymująco wzrasta w ostatnich 2-3 dekadach. Może stanowić w przyszłości poważne zagrożenie dla drzewostanów iglastych na tym terenie, dotkniętym również przez obniżanie się poziomu wód gruntowych.

MATERIAŁY I METODY
Badania przeprowadzono na pięciu powierzchniach obserwacyjnych (tab. 1). Na każdej z tych powierzchni w ciągu sezonu wegetacyjnego pozyskiwano ryzomorfy, za pomocą których opieńka infekuje korzenie sosien. Ryzomorfy pobierano z drzew porażonych, z widocznymi objawami przebarwienia igieł.

Jesienią, podczas pojawu owocników, pobierano je do badań. Wszystkie próbki pochodziły wyłącznie z powierzchni badawczych.

W laboratorium ryzomorfy płucono w wodzie wodociągowej, odkażano w alkoholu etylowym 96% (ok. 1 min.) i po wyjściu suszono w sterylnej bibule. Po wysuszeniu ryzomorfy były dzielone na 1 centymetrowe odcinki i wykładane na płytki Petriego z 1% pożywką maltozową z benomylem i antybiotykiem – streptomycyną. Wyrosły z inokulatów grzybnię przenoszono do próbówek z 1% pożywką maltozową.
Table 1

<table>
<thead>
<tr>
<th>Wydzia³enie Division</th>
<th>Leœnœêœ Forest Range</th>
<th>Typ siedliskowy lasu Forest site type</th>
<th>Wiek sosny w 2002 roku Pine age in 2002</th>
<th>Liczba pow. obserwacyjnych Num of observation plots</th>
<th>Liczba drzew na pow. observ. per observ. plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>47k</td>
<td>Huta Pusta</td>
<td>BMœw</td>
<td>9</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>43f</td>
<td>Kamiœsko</td>
<td>Bœw</td>
<td>12</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>64c</td>
<td>Kamiœsko</td>
<td>LMoœw</td>
<td>10</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>85c</td>
<td>Potasze</td>
<td>BMœw</td>
<td>9</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>35b</td>
<td>Huta Pusta</td>
<td>Bœw</td>
<td>13</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

Bœw – Bœr œwie¿y. Fresh coniferous forest
BMœw – Bœr mieszany œwie¿y. Fresh mixed coniferous forest
LMœw – Las mieszany œwie¿y. Fresh mixed broadleaved forest

Z owocników wysypywano zarodniki na œlœko Petriego z 0,5% po¿yw¹k maltozow¹. Po 2-3 dniach wyjmowano przy pomocy pipety Pasteura kie³kuj¹ce pojedyncze zarodniki i przenoszono je do prob³ów z 1% po¿yw¹k maltozow¹. Równiez z mi¹¿a owocników izolowano grzybœ post¹pując analogicznie, jak w przypadku ryzomorf.

Gatunki z rodzaju Armillaria identyfikowano za pomoc¹ testu intersterylnoœci grzyb¹n opracowanego przez Koœhonen a (1978), poleg¹cego na œ¹czeniu ze sob¹ czystych kultur grzyb¹wych. Uzyskane izolaty opiek¹ ³¹czono z grzyb¹mi testowymi. By³y nimi nast¹puj¹ce gatunki opiek¹: A. borealis Marxm. et Korhonen, A. cepistipes Velen., A. gallica Marxm. et Romagn., A. mellea (Vahl: Fr.) Kumm. i A. ostoyae. Ka¿dy izolat uzyskany z powierzchni badawczej był testowany z dwoma izolatami tych piœ¹ci europejskich gatunków opiek¹. Po trzech tygodniach incubacji w temperaturze 23°C oceniano reakcje testowanych grzyb¹w: po œ¹czeniu siê grzybn¹ haploidalnej testera z identyfikowan¹ grzybnią dochodzi bowiem do ograniczenia jej wzrostu i przemiany w grzyb¹œn¹ dikariotycz¹, jeśli mamy do czynienia z reprezentantem tego samego gatunku.

WYNIKI

Spoœród piœ¹ci powierzchni badawczych, na czterech stwierdzono obecnoœæ ryzomorf opiek¹ w glebie. W pododdziale 35b drzewa zostaœy poraœone przez hubê korzeni i nie stwierdzono poraœenia przez Armillaria spp., ani obecnoœci ryzomorf w glebie.

Na wszystkich pozostałych powierzchniach na drzewach, z których pobierane były próby, obserwowano obecnoœæ liczbnych ryzomorf w glebie oraz pł¹tów grzybniowych pod kor¹ drzew. W latach pojawu owocników obserwowano je

Po wykonaniu testów zgodności genetycznej stwierdzono, że wszystkie izolaty zebrane na powierzchniach badawczych należą do gatunku _A. ostoyae_. Uzyskane izolaty zestawiono w tabeli 2.

Tabela 2
Zestawienie uzyskanych izolatów

<table>
<thead>
<tr>
<th>Leśnictwo Forest Range</th>
<th>Wydzienienie Division</th>
<th>Typ siedliskowy lasu Forest site type</th>
<th>Uzyskane izolaty* Isolates obtained*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huta Pusta</td>
<td>47k</td>
<td>BMśw</td>
<td>987304, 987306, 987308, 987312, 987313, 987314,</td>
</tr>
<tr>
<td>Kamieńsko</td>
<td>43f</td>
<td>Bśw</td>
<td>987303, 987305, 987307, 987309, 987311, 997302, 997303, 997304,</td>
</tr>
<tr>
<td>Kamieńsko</td>
<td>64c</td>
<td>LMśw</td>
<td>987301, 987302, 007305, 007306, 007309, 007310, 007314, 007315, 007316, 007317, 007318, 007319, 007320, 007321, 007322, 007323, 007324, 007325, 007326, 007327, 007328, 007329, 007330, 007331</td>
</tr>
<tr>
<td>Potasie</td>
<td>85c</td>
<td>BMśw</td>
<td>007301, 007302, 007303, 007304, 007311, 007312, 007313</td>
</tr>
</tbody>
</table>

* numery tłustym drukiem oznaczają izolaty diploidalne
* diploid isolates codes in bold print

DYSKUSJA

Stwierdzenie tylko jednego gatunku opieńki może wiązać się z uzyskiwaniem izolatów wyłącznie z sosen. Właśnie _A. ostoyae_ uważany jest za głównego patogena drzewostanów iglastych w Europie, a także w Ameryce Północnej (H o o d i in., 1991). Patogen ten poraża drzewa w każdej klasie wieku, ale szczególnie duże szkody powoduje w I klasie wieku (M a n k a, 1998). Chorobotwórczy jest zwłaszcza dla drzewostanów zakładanych po uprzednio uprawianych drzewostanach liściastych lub też mieszananych, co właśnie miało miejsce na terenie gdzie założono powierzchnie badawcze.

Istotnym aspektem jest również sposób założenia uprawy, ponieważ przygotowanie gleby orką w bruzdy powoduje przecinanie ryzomorfi, co zwiększa ilość aktywnych końców mogących porażać korzenie, a tak właśnie przygotowywane były powierzchnie, na których założono badane drzewostany.

Wydaje się również, że dodatkowym czynnikiem oddziałującym stresowo na drzewa, szczególnie pierwszej klasy wieku, może być odczuwalne na tym terenie obniżanie się poziomu wód gruntowych (K n o b e l, informacja ustna, 2000).
LITERATURA

Z badań nad monitoringiem opieńkowej zgnilizny korzeni drzew w młodych drzewostanach sosnowych Nadleśnictwa Zielonka

Streszczenie