Konkurencyjność owsa głuchego (*Avena fatua L.*) w stosunku do pszenżyta jarego odmiany Maja

JACEK KIEĆ

Katedra Ogólnej Uprawy Rolnej i Roślin, Akademia Rolnicza im. H. Kollątaja, 31-120 Kraków, Al. Mickiewicza 21

(Otrzymano dn. 20.01.1997)

A b s t r a c t

The study on wild oat competition in spring triticale was carried in years 1991 and 1996. *Avena fatua* in all densities (0, 4, 8, 16, 32 pcs/m²) didn’t influenced on elements of yield structure and other studied triticale features, only in the weather conditions of 1991 year the lowest density increased yield and mass of 1000 grains. Wild oat was pushed out by triticale during the growing season.

WSTĘP

Dotychczas prowadzono badania nad zdolnością konkurencyjną tego chwastu w stosunku do różnych roślin uprawnych (np. Kapeluszny, 1981; Kieć, 1984). Jak dotąd brak jest badań nad zdolnością konkurencyjną owsa głuchego w stosunku do pszenżyta jarego. Jest to zboże stosunkowo nowe w uprawie, gdyż dopiero ostat-
nio zostały wyhodowane odmiany spełniające podstawowe wymagania. Charakteryzuje się one składem aminokwasowym zbliżonym do pszenicy, zwłaszcza jeśli chodzi o zawartość aminokwasów egzogennych. Znana pszenłyta jest bogatsze w aminokwasy egzogene od pszenicy i żyta (Rako w 1989). Zawiera podobną ilość białka strawnego do pszenicy, a większą od żyta i jęczmienia oraz mniej włókna od jęczmienia i owsa i substancji anty żywniowych w stosunku do żyta (Michaliśk, 1994).

Pszenłyta daje najwyższe plony na glebach najlepszych, ale wykazuje znacznie niższy spadek plonu w miarę pogorszania się warunków glebowych w porównaniu do pszenicy. Dlatego zastąpienie nim, żyta na glebach gdzie planowanie pszenicy i jęczmienia jest zawodne byłoby jak najbardziej celowe. W Polsce pod zastawami pszenłyta było w 1994 r. 587 tys. ha.

W 1988 roku została wprowadzona do uprawy odmiana Maja, charakteryzująca się dobrą zdrowotnością, przeciętną odpornością na wyleganie, zawartością białka i skłonnością do porastania. Rośliny tej odmiany są o około 20 cm wyższe od roślin pszenicy jarej. Daje ona stosunkowo wysokie plony (ok. 54 dt/ha) i znacznie wysokiej masie tysiąca ziaren (44,1 g) (Maćkowski, Budziowski, Łukęńko, 1994).

Celem niniejszej pracy było zbadanie konkurencyjności owsa głuchego w stosunku do pszenłyty jarego odmiany Maja.

WARUNKI I METODY

Doświadczenie założono metodą losowanych bloków w czterech powtórzeniach, na poletkach o powierzchni 4 m². Czynnikiem doświadczenia były poziomy zachwaszczenia owsem głuchym – 0, 4, 8, 16 i 32 szt/m².

Do oceny istotności różnic zastosowano analizę wariancji oraz test Studenta.

Oceniając konkurencyjność owsa głuchego badano elementy struktury płonu oraz niektóre cechy pszenłyty (tab. I, II).

Warunki pogodowe przedstawiono na wykresach (fig. 1, 2). Okres wegetacji w roku 1991 był nieznacznie cieplejszy w okresie od kwietnia do czerwca, a następnie nieco chłodniejszy w porównaniu do wieloletnia. Natomiast w 1996 r. sezon wegetacji był chłodniejszy niż w wieloletni. Opady w 1991 r. były znacznie mniejsze w marcu i czerwcu, a większe w maju w stosunku do wieloletnia. W roku 1996 długa zima i intensywne opady wiosenne opóźniły siew pszenłyty. Rok ten był wyjątkowo mokry, zwłaszcza w okresie lipca i sierpnia, co utrudniło dojrzewanie i zbór.
Tabela 1 – Table 1
Elementy struktury plonu pszenicy jarego w zależności od obsady owasa głuchego
Elements of triticale yield structure dependent on wild oat density

<table>
<thead>
<tr>
<th>Obsada owasa głuchego Wild oat density</th>
<th>Liczba kłosów Number of heads/m²</th>
<th>Liczba ziaren w kłosie Number of grains per head</th>
<th>Masa 1000 ziaren Mass of 1000 grains [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>463</td>
<td>351</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>465</td>
<td>320</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>431</td>
<td>329</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>443</td>
<td>268</td>
<td>26</td>
</tr>
<tr>
<td>32</td>
<td>451</td>
<td>341</td>
<td>24</td>
</tr>
<tr>
<td>średnio mean</td>
<td>451</td>
<td>322</td>
<td>24.4</td>
</tr>
<tr>
<td>NIR-LSD (P=0,05)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tabela 2 – Table 2
Badane cechy pszenicy w zależności od obsady owasa głuchego
Other features of triticale in dependence on wild oat density

<table>
<thead>
<tr>
<th>Obsada owasa głuchego Wild oat density</th>
<th>Plon ziarna Yield of grains (g/m²)</th>
<th>Plon słomy Yield of straw (g/m²)</th>
<th>Długość źdźbła Straw length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>416</td>
<td>248</td>
<td>523</td>
</tr>
<tr>
<td>4</td>
<td>460</td>
<td>229</td>
<td>580</td>
</tr>
<tr>
<td>8</td>
<td>440</td>
<td>235</td>
<td>505</td>
</tr>
<tr>
<td>16</td>
<td>444</td>
<td>185</td>
<td>533</td>
</tr>
<tr>
<td>32</td>
<td>423</td>
<td>256</td>
<td>539</td>
</tr>
<tr>
<td>średnio mean</td>
<td>437</td>
<td>231</td>
<td>536</td>
</tr>
<tr>
<td>NIR-LSD (P<0,05)</td>
<td>43.9</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Objaśnienia – Explanations:
n.s. – różnice statystycznie nieistotne – insignificant differences

WYNIKI BADAŃ I Dyskusja

W roku 1991 wschody owasa głuchego były równomierne i równoczesne z rośliną uprawną, natomiast w 1996 r. były opóźnione. W obu latach, w mowerze rozwoju roślin uprawnych, owies głuchy był wypierany przez pszenzyto, tak że do momentu zbioru przetrwały tylko nieliczne jego okazy. W roku 1991 zaobserwowano, w czasie zbioru, jego obecność tylko na dwóch polekach (1 i 2 szt/m²), natomiast w 1996 r. – na siedmiu (od 1 do 5 szt/m²). Na tej podstawie można stwierdzić, że był on wypierany w czasie okresu wiercenia przez pszenzyto. J a s k u l s k i (1996) stwierdzał, że wydzieliny z biomasy pszenicy obniżają plonowanie owasa siewnego o 27,7%, natomiast R u d n i c k i, W a s i l e w s k i (1994) uprawiając owies siewny i pszenzyto w mieszkankach, stwierdzili brak wpływu tego pierwszego na rozwój organów gene-
Fig. 1. Rozkład średnich temperatur miesięcznych – Distribution of average monthly temperatures (według danych katedralnej stacji meteorologicznej – according to data of own weather station)

Fig. 2. Rozkład miesięcznych opadów – Distribution of monthly precipitations (według danych katedralnej stacji meteorologicznej – according to data of own weather station)
ratywnych pszenicy podczas gdy owies siewny wytwarzał drobniejsze ziarnaki. Z wyników uzyskanych w tym doświadczeniu wynika, że owies głuchy w silniejszym stopniu reaguje na obecność pszenicy od owsa uprawnego.

Badane cechy dotyczące pszenicy przedstawiono w tabeli II. Nie stwierdzono statystycznie istotnego wpływu owsa głuchego na te cechy, z wyjątkiem plonu ziarna w 1991 roku, który przy obsadzie 4 szt. owsa na 1 m² był istotnie wyższy od uzyskanego w kontroli. Zaznaczyła się również tendencja do wzrostu plonu słomy przy niższych obsadach owsa głuchego. Natomiast wyraźnie widać, że mokry i chłodniejszy rok 1996 (Fig. 1 i 2) wpłynął na silniejszy rozwój wegetatywny pszenicy. Średni plon słomy był prawie dwukrotnie wyższy, natomiast średni plon ziarna prawie dwukrotnie niższy, niż w 1991 r. Średnia długość żdźbła pszenicy w 1996 r. była tylko nieznacznie większa niż w roku 1991, co by wskazywało na wytworzenie przez tę roślinę znacznie grubszych żdźbeli.

PODSUMOWANIE I WNIOSKI

1. Owies głuchy, przy żadnej z założonych obsad, nie wpłynął w sposób statystycznie istotny na badane cechy pszenicy jarego odmiany Maja. Wskazuje to na większą, niż w przypadku innych jarych roślin zbożowych, odporność pszenicy na konkurencyjne działanie tego chwastu.

2. Owies głuchy jest zagłuszany przez pszenicy, tym silniejsze są niedobory wody w glebie.

3. Najniższa obsada Avena fatua (4 szt/m²) w roku 1991 wywołała statystycznie istotną wśród plonu ziarna pszenicy jarego oraz MTZ, co by wskazywało na stymulujące działanie małej liczby roślin tego chwastu na roślinę uprawną w pewnych warunkach pogodowych.

4. Aby uzyskać jednoznaczne wyniki doświadczenia należało by powtórzyć w odmiennych warunkach siedliskowych, jak również przebadać zachowanie się innych odmian pszenicy jarego.
S tre sz czen ie

Badania nad konkurencyjnością owsa głuchego w stosunku do pszenicy jarego odmiany Maja przeprowadzono w latach 1991 i 1996. Owies głuchy przy żadnej z założonych obsad (0, 4, 8, 16, 32 szt/m²) nie wpłynął w sposób statystycznie istotny na żaden z elementów struktury plonu oraz badane cechy pszenicy jarego. Wyjątek stanowiły MTZ oraz plon ziarna z 1 m² w roku 1991. W warunkach pogodowych tego roku Avena fatua, przy najniższej obsadzie, wpłynął stymulujące na obie te cechy. Chwast ten zostaje wypierany przez pszenicy w okresie vegetacji.

L I T E R A T U R A

M a c k o w i a k W., B u d z i a n o w s k i G., Ł u k e ń k o U., 1994. Charakterystyka odmian pszenicy ozimego i jarego hodowli ZDHAR Małyszyn oraz ich reakcja na niektóre czynniki środowiska. Zesz. Nauk. AR w Szczytnie, 162: 141-146.

R u d n i c k i E., W a s i l e w s k i P., 1994. Dorodność kłosów i ziarna zbóż w mieszanakach. Mat. Konf. „Stan i perspektywy uprawy mieszanek zbożowych”. Poznań: 45-49.
