Badania nad biologią owsa głuchego (*Avena fatua* L.)
Cz. II. Konkurencyjność różnych odmian owsa głuchego w stosunku do jęczmienia jarego

JACEK KIEĆ

Katedra Ogólnej Uprawy Rol i Roślin, Akademia Rolnicza im. H. Koliṣtaja.
31-120 Kraków, Al. Mickiewicza 21

(Otrzymano dn. 06.02.1996)

Abstract

The study on different varieties of wild oat competition in spring barley was carried in 1989 and 1990. 10 varieties of *Avena fatua* in 4 densities (0, 16, 32, 64 plants per m²) were sown with spring barley. Each variety had different influence on the yield and elements of its structure. On the tillering the highest had varieties G and C, the lowest D. On a number of grains in a head - the highest - D, the lowest A, B, G, H, I, J and on a mass of 1000 grains the highest - F1 and the lowest - A. Beginning from the density of 16 wild oat plants, the yield of spring barley is lowering significantly. This is due to lower number of grains in the head.

WSTĘP

Rośliiny konkurują ze sobą o różne czynniki potrzebne im do życia. W 70% większe znaczenie ma konkurencja korzeniowa – o składniki pokarmowe i wodę, od nadziemnej – o światło. Ta ostatnia została stwierdzona tylko w przypadku chwastów i znaczenie jej rośnie w miarę rozwoju roślin (Wilson, 1988).

Jeśli chodzi o konkurencyjne działanie owsa głuchego, zdania są bardzo podzielone. Pewne jest natomiast, że im wcześniej on wjeżdże w stosunku do rośliny uprawnej tym silniej z nią konkuruje (Balola i in., 1993; Peters, 1984; Peters, Wilson, 1983; Wimschneider, Bachtaler, 1979). Każdy dzień
wcześniejzych wschodów owsa głuchego od rośliny uprawnej obniża jej plon o średnio 3% (O'Donovan i in., 1985). Duże znaczenie ma również długość przebywania chwastu w lanie rośliny uprawnej. Usunięty do fazy 6 liścia nie wpływał na plon pszenicy, podczas gdy pozostawiony do jej zbioru wywoływał spadek plonu ziarna o 28% (Kirkland, 1993). Gdy został usunięty w fazie krzewienia – nie było wpływu na plon pszenicy, gdy w fazie strzelania w źdźbło spadek wyniósł 9%, w fazie kwitnienia 33%, a pozostawiony do zbioru – 41% (Cundey i in., 1989). Usunięcie go w okresie do 3-4 tygodni po wschodach zbóż powoduje to, że nie wpływa on w sposób istotny na ich plony (Martin, Field, 1988).

Rośliny owsa głuchego, które weszły do fazy 2 liści zbóż produkują 90% nasion. Rośliny te są większe, łatwiej przestarają lan i stanowią większe zagrożenie. Natomiast te rośliny które wędzą później, są drobniejsze i z reguły nie wytwarzają nasion (Martin, Field, 1988; Peters, Wilson, 1983).

Obsada owsa głuchego również decyduje o jego konkurencyjności. Jedna i trzy rośliny na metr bieżący (mb) rzędu buraka cukrowego obniża plon korzeni o 14 i 22%, a biomasę tej rośliny o 16 i 25% odpowiednio (Mesbah i in., 1995). Plon pszenicy jarej spada proporcjonalnie do wzrostu zachwaszczenia, a zależność ta występuje przy większej ilości owsa głuchego niż 1,6% ogólnej obsady (CaIson, Hill, 1985; Cundey i in., 1989). W jęczmieniu jarym 1 roślina owsa głuchego na 1 m² obniża plon ziarna o średnio 0,6% (Wilson i in., 1990).

Dostatek wody w glebie według jednych autorów potęguje konkurencyjne działanie owsa głuchego (Lutman i in., 1994), a innych osłabia (Wimschneider i in., 1990).

Przy dostatku składników pokarmowych i wody w glebie decydującą staje się konkurencja o światło (Donald, 1961; Satorre, Snaydon, 1992).

Owies głuchy początkowo rośnie wolniej od zbóż mimo, że ma silniejszy system korzeniowy. Tym się tłumaczy jego mniejszą zdolność konkurencyjną w początkowym okresie rozwoju (Pavlichenko, Harrison, 1934). Ze wszystkich zbóż, jęczmien jary rozwija się najszybciej i prawdopodobnie dlatego najsielniej konкуruje z owsem glutchem (Roppoff, 1988). W późniejszym okresie, zwłaszcza w fazie wyrzucania wiech, chwast ten przeraża rośliny uprawne silnie je zaciśniając. Okres ten jest przyjmowany za krytyczny dla konkurencji między owsem glutchem a roślinami uprawnymi (Cousens i in., 1991; Morishita i in., 1991; Morishita, Hill, 1988 a, b). Większość liści owsa głuchego znajduje się na wysokości ponad 60 cm od powierzchni gruntu, co powoduje zmniejszenie przenikania światła w głąb lanu o 16-37% (Cundey i in., 1989; Wimschneider, Bachtaler, 1979).
Niekorzystny wpływ owsa głuchego można w pewnym stopniu zredukować przez zageszczenie obsady roślin uprawnych (Barton i in., 1992; Evans i in., 1991; O'Donovan i in., 1985).

Celem niniejszej pracy było zbadanie zdolności konkurencyjnej polskich odmian owsa głuchego.

METODYKA

Doświadczenie założono w latach 1989 i 1990 w RZD Mydlniki k/Krakowa na glebie brunatnej właściwej wylugowanej, wytworzonej z utworów fluwioglacialnych o składzie granulometrycznym piasku gliniastego lekkiego i słabogliniastego. Średnie temperatury miesięczne i miesięczne sumy opadów za okres badań przedstawiono w tabeli 1.

Tabela 1

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Średnie temperatury miesięczne</th>
<th>Średnie sumy opadów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average monthly temperatures</td>
<td>Monthly sums of rainfall</td>
</tr>
<tr>
<td>I</td>
<td>1,08</td>
<td>1,10</td>
</tr>
<tr>
<td>II</td>
<td>4,36</td>
<td>5,35</td>
</tr>
<tr>
<td>III</td>
<td>7,38</td>
<td>8,02</td>
</tr>
<tr>
<td>IV</td>
<td>10,41</td>
<td>8,96</td>
</tr>
<tr>
<td>V</td>
<td>14,32</td>
<td>15,72</td>
</tr>
<tr>
<td>VI</td>
<td>15,67</td>
<td>17,71</td>
</tr>
<tr>
<td>VII</td>
<td>18,62</td>
<td>18,33</td>
</tr>
<tr>
<td>VIII</td>
<td>17,80</td>
<td>19,05</td>
</tr>
<tr>
<td>IX</td>
<td>15,23</td>
<td>12,36</td>
</tr>
<tr>
<td>X</td>
<td>10,33</td>
<td>10,57</td>
</tr>
<tr>
<td>XI</td>
<td>2,59</td>
<td>5,90</td>
</tr>
<tr>
<td>XII</td>
<td>1,06</td>
<td>0,16</td>
</tr>
<tr>
<td>Suma Sum 118,85</td>
<td>123,23</td>
<td>689,7</td>
</tr>
<tr>
<td>Śr. roczna Śr. yearly 9,90</td>
<td>10,26</td>
<td></td>
</tr>
</tbody>
</table>

W roku 1989 – 28,03 i w roku 1990 – 26,03 wysiano jęczmień jary odmiany Aramir oraz owies głuchy (Avena fatua L.). Czynnikami doświadczenia było 10 odmian owsa głuchego, scharakteryzowanych dokładnie w części pierwszej niniejszej pracy (Kieć, 1995) i 4 ich obsady – 0, 16, 32, 64 roślin na 1 m².
Obsada owsa głuchego została ustalona po jego wschodach. W czasie trwania doświadczenia inne chwasty były usuwane chemicznie (dwuliścienne) bądź ręcznie. Doświadczenie założono metodą losowanych bloków w 4 powtórzeniach. Po zbiorze określono plon ziarna jęczmienia z 1 m², elementy jego struktury oraz wysokość roślin jęczmienia i owsa głuchego.

Do oceny istotności różnic zastosowano analizę wariancji oraz test Studenta.

WYNIKI

Elementy struktury plonu jęczmienia jarego przedstawiono w tabeli 2. W roku 1989, trochę chłodniejszym i o większej ilości opadów w okresie wegetacji jęczmienia, odmiany owsa głuchego w sposób statystycznie istotny wpłynęły na ilość kłosów z 1 m² oraz ilość ziarn w kłosie. W roku następnym, minimalnie cieplejszym i słabszym, różnicę statystycznie bardzo istotne stwierdzono tylko dla ilości kłosów z m².

 Wyniki uzyskane dla obu lat doświadczenia wskazują, że odmiany owsa głuchego wpłynęły w sposób statystycznie istotny na wszystkie elementy struktury plonu jęczmienia, przy czym na ilość kłosów z m² i MTZ wpływ był bardzo istotny. Różna konkurencyjność odmian owsa głuchego jest zgodna z wynikami innych badań (Darmency, Aujas, 1992; Kieć, 1984; Rooney, 1990).

Obsada owsa głuchego zarówno w poszczególnych latach jak i przy rozpatrywaniu ich łącznie za dwa lata, wpłynęła w sposób statystycznie istotny tylko na ilość ziarn w kłosie. Jest to zgodne z wynikami uzyskanymi przez Morishita, Hill, (1988 b), którzy oprócz spadku ilości ziarn w kłosie stwierdzili również spadek MTZ ale przy większej obsadzie chwastu.

Tabela 3 przedstawia niektóre cechy jęczmienia jarego oraz wysokość roślin owsa głuchego. W roku 1989 odmiany owsa wpłynęły w sposób statystycznie istotny na wysokość jęczmienia jarego i bardzo istotny na plon ziarna, a w roku następnym w sposób bardzo istotny na plon ziarna oraz masę kłosów, natomiast nie stwierdzono różnic statystycznie istotnych w przypadku wysokości jęczmienia. W taki sam sposób ułożyły się zależności dla obu lat łącznie.

W żadnym wypadku nie stwierdzono różnic statystycznie istotnych jeśli chodzi o wysokość owsa głuchego. Wynika z tego, że roślina uprawna zatarła różnice w wysokości, charakterystyczne dla poszczególnych odmian (Kieć, 1995). Należy tu zaznaczyć, że w każdym przypadku owies głuchy był wyższy od rośliny uprawnej co jest zgodne z danymi z literatury (Cousens in., 1991; Cudney i in., 1991; Evans in., 1991; Morishita, Hill, 1988 b).

Różna obsada wpłynęła w sposób statystycznie bardzo istotny zarówno w poszczególnych latach jak i obu łącznie na obniżkę plonu ziarna jęczmienia oraz masę kłosów, co jest zgodne z wynikami uzyskanymi w innych badaniach (Cudney i in., 1989; Evans in., 1991; Kapeluszy, 1981; Kieć, 1984; Kollar, Cernusko, 1981; Morishita, Hill, 1988 a, b).
<table>
<thead>
<tr>
<th>Year</th>
<th>Elements of yield structure</th>
<th>Odmiany osa głuchego – Varieties of wild oat</th>
<th>Obsada osa głuchego – Density of wild oat</th>
<th>(\bar{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wysokość jęczmienia, cm</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1989</td>
<td>Barley height</td>
<td>61.9</td>
<td>63.8</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td>Yield of grains, g/m²</td>
<td>388.3</td>
<td>388.6</td>
<td>326.9</td>
</tr>
<tr>
<td></td>
<td>Masa kłosów, g/m²</td>
<td>465.0</td>
<td>472.5</td>
<td>439.4</td>
</tr>
<tr>
<td></td>
<td>Wysokość osa, cm</td>
<td>78.7</td>
<td>80.4</td>
<td>90.2</td>
</tr>
<tr>
<td>1990</td>
<td>Barley height</td>
<td>71.0</td>
<td>72.7</td>
<td>73.5</td>
</tr>
<tr>
<td></td>
<td>Yield of grains, g/m²</td>
<td>447.8</td>
<td>425.0</td>
<td>388.8</td>
</tr>
<tr>
<td></td>
<td>Masa kłosów, g/m²</td>
<td>578.1</td>
<td>531.3</td>
<td>498.8</td>
</tr>
<tr>
<td></td>
<td>Wysokość osa, cm</td>
<td>88.3</td>
<td>95.1</td>
<td>89.4</td>
</tr>
</tbody>
</table>

* – różnice bardzo istotne – differences very significant

<table>
<thead>
<tr>
<th>Year</th>
<th>Elements of yield structure</th>
<th>Odmiany osa głuchego – Varieties of wild oat</th>
<th>Obsada osa głuchego – Density of wild oat</th>
<th>(\bar{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Barley height</td>
<td>66.5</td>
<td>68.2</td>
<td>68.7</td>
</tr>
<tr>
<td></td>
<td>Yield of grains, g/m²</td>
<td>418.0</td>
<td>406.8</td>
<td>357.8</td>
</tr>
<tr>
<td></td>
<td>Masa kłosów, g/m²</td>
<td>519.1</td>
<td>501.9</td>
<td>469.1</td>
</tr>
<tr>
<td></td>
<td>Wysokość osa, cm</td>
<td>83.5</td>
<td>87.8</td>
<td>89.8</td>
</tr>
<tr>
<td>Lata</td>
<td>Elementy struktury plonu jęczmienia</td>
<td>Odmiany owsa głuchego - Varieties of wild oat</td>
<td>Obsada owsa głuchego - Density of wild oat</td>
<td>(x)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1989</td>
<td>Ilość kłosów Number of heads /m²</td>
<td>692,6</td>
<td>692,6</td>
<td>715,4</td>
</tr>
<tr>
<td></td>
<td>Ilość ziarn w kłosie Number of grains per head</td>
<td>14,8</td>
<td>15,4</td>
<td>13,7</td>
</tr>
<tr>
<td></td>
<td>MTZ Mass of 1000 grains (g)</td>
<td>38,4</td>
<td>35,9</td>
<td>35,3</td>
</tr>
<tr>
<td>1990</td>
<td>Ilość kłosów Number of heads /m²</td>
<td>715,7</td>
<td>731,2</td>
<td>637,1</td>
</tr>
<tr>
<td></td>
<td>Ilość ziarn w kłosie Number of grains per head</td>
<td>15,8</td>
<td>15,1</td>
<td>16,5</td>
</tr>
<tr>
<td></td>
<td>MTZ Mass of 1000 grains (g)</td>
<td>41,8</td>
<td>40,4</td>
<td>39,4</td>
</tr>
<tr>
<td>1989-90</td>
<td>Ilość kłosów Number of heads /m²</td>
<td>704,1</td>
<td>733,6</td>
<td>676,3</td>
</tr>
<tr>
<td></td>
<td>Ilość ziarn w kłosie Number of grains per head</td>
<td>15,3</td>
<td>15,3</td>
<td>15,1</td>
</tr>
<tr>
<td></td>
<td>MTZ Mass of 1000 grains (g)</td>
<td>40,1</td>
<td>38,2</td>
<td>37,3</td>
</tr>
</tbody>
</table>

* - różnice bardzo istotne - differences very significant
dla masy tysiąca ziarn (MTZ) w 1989-90r. - NIR (najmniejsza istotna różnica) dla lat = 2,4
for mass of 1000 grains in 1989-90 y - LSD for years = 2,4

r.n. n.s. - różnice nieistotne - non significant
\(x \) - średnia dla odmian i obsady
- mean for varieties and densities
WNIOSKI

1. Badane odmiany owsa głuche, występujące w Polsce wykazują różną zdolność konkurencyjną w stosunku do jęczmienia jarego.

3. Konkurencyjny wpływ odmian owsa głuchego objawił się poprzez obniżenie krzewistości produkcyjnej jęczmienia, ilości ziarn w kłosie i MTZ. Na krzewistość najsilniej działała odmiana G i C, a najsłabiej – D, na ilość ziarn w kłosie – najsilniej odmiana D, a najsłabiej A, B, G, H, I, J, natomiast na masę tysiąca ziarn (MTZ) – najsilniej F i I, a najsłabiej A.

4. W poszczególnych latach badań istotny statystycznie spadek plonu spowodowała obsada owsa głuchego w ilości 32 szt/m². Natomiast wyniki za dwa lata wskazują na silniejsze negatywne działanie tego chwastu, gdyż istotny spadek plonu jęczmienia nastąpił już przy najniższej obsadzie owsa głuchego – 16 szt/m².

5. Zróżnicowana obsada owsa głuchego wpływała na spadek plonu jęczmienia jarego poprzez obniżenie ilości ziarn w kłosie.

S t r e s z c e n i e

LITERATURA

B a bal ola A., P r o u d - W i l l i a m s R.J., D r e n n a n D.S.H., 1993. Effects of time of weed emergence on competition in autumn-sown field beans (Vicia faba L.). Proc.EWRS, Braunschweig: 49-54.

B a r t o n D.L., T h i l l D.C., S h a f i i B., 1992. Integrated wild oat (Avena fatua) management affects spring barley (Hordeum vulgare) yield and economics. Weed Techn. 6:129-135.

C o u s e n s R.D., W e a v e r S.E., M a r t i n T.D., B l a i r A.M., W i l s o n J., 1991. Dynamics of competition between wild oats (Avena fatua L.) and winter cereals. Weed Res. 31: 203-210.

C u d n e y D.W., J o r d a n L.S., H o l t J.S., R e i n t s J.S., 1989. Competitive interactions of wheat (Triticum aestivum) and wild oats (Avena fatua) grown at different densities. Weed Sci. 37: 538-543.

