Zmiany zawartości regulatorów wzrostu roślin w liściach i organach reprodukcyjnych rzodkiewki (Raphanus sativus L.) w różnych fazach jej rozwoju

Changes in the level of growth regulators in leaves and reproductive organs of Raphanus sativus L. in different stages of plant development

M. MICHIKIEWICZ I L. MICHALSKI*

WSTĘP

Mimo wielkiego zainteresowania, jakie wzbudza ten problem, brak odpowiedniej metody rozdzielania i identyfikowania poszczególnych stymulatorów i inhibitorów wzrostu nie pozwala na bliższe poznanie dynamiki tych substancji w trakcie rozwoju rośliny. Dopiero zastosowanie w badaniach nad regulatorami wzrostu metod rozdzielczych — zwłaszcza chromatografii, umożliwia bliższą analizę tego zagadnienia.

M i m a u l t (1956) przy pomocy chromatografii i testu biologicznego

* W pracach laboratoryjnych udział brali: A. Matuszkiewicz i W. Piecha.
badal aktywność auksyn i inhibitorów wzrostu w nasionach gruszy i wiśni w różnych fazach ich rozwoju. W wyniku doświadczeń stwierdził, że nasiona we wczesnych fazach rozwoju zawierały auksyny i odznaczały się brakiem inhibitorów. W miarę dojrzewania ilość auksyn zmniejszała się, a zawartość inhibitorów wzrastała.

Badania nad dynamiką stymulatorów i inhibitorów wzrostu w trakcie rozwoju rośliny są jednak bardzo nieliczne. Uwzględniając to, a także doceniając ogromną rolę, jaką spełniają te substancje w ontogenzie rośliny, autorzy postanowili przeprowadzić chromatograficzną i biologiczną analizę regulatorów wzrostu występujących w liściach i organach produktywnych rzodkiewki w różnych fazach jej rozwoju.

METODYKA

Materiałem doświadczalnym była rzodkiewka Raphanus sativus L. var. radicula DC. Saxa, uprawiana na poletkach Ośrodka Biologii Stosowanej U.M.K. w Konicznycze.

Aby uzyskać rośliny pozostające w różnych fazach rozwojowych wysiewano nasiona co 5 dni począwszy od 3.IV.1957 r. Materiał do analizy zebrano jednorazowo w dniu 8 czerwca.

Doświadczenie, w którym przeprowadzono analizę regulatorów wzrostu w liściach obejmowało 5 wariantów. Badano liście zebrane z roślin 1. przed wydaniem pędu kwiatowego, 2. po wytworzeniu pędu kwiatowego, lecz przed pojawieniem się pączków kwiatowych, 3. w końcowej fazie rozwoju pączków, 4. z roślin w pełni kwitnących oraz 5. po przekwitnieniu. Liście pochodziły każdorazowo z wewnętrznych partii rozetek liściowych.
W doświadczeniu drugim badano poziom regulatorów wzrostu w orga-
nach reprodukcyjnych rośliny. Analizie poddano paęczki w początkowej
oraz w końcowej fazie rozwoju, kwiaty w pełni rozwinięte oraz po przekwit-
nieniu (zawiaski owoców po pięciu dniach od pełni kwitnienia). Do doświad-
czenia starano się wybrać paęczki względnie kwiaty najbardziej typowe,
bydace w tej samej fazie rozwoju.

Materiał przeznaczony do analizy zarówno liści, jak i organów repro-
dukcyjnych pobierano z tych samych roślin z wyjątkiem tych wariantów,
gdzie analizie poddawano liście z roślin, które nie wytworzyły jeszcze paęczków
kwiatowych.

Na jedną próbkę pobierano po 15 g materiału roślinnego, który zalewano
50 ml bezwodnego alkoholu etylowego i zamrażano do temperatury −10°C,
a następnie rozcierano. Ekstrakcję prowadzono 24 godziny w lodówce o tem-
peraturze około +4°C, po czym ekstrakt odwirowywano od części stałych.
Z tak przygotowanego roztworu pobierano próbkę w ilości 20 ml, którą
zagęszczano pod zmniejszonym ciśnieniem na łaźni wodnej, której tempera-
turę nie przekraczała +55°C. Wodną pozostałość zadawano 1 ml bezwodnego
alkoholu etylowego. Tak przygotowany ekstrakt nanoszono przy pomocy
mikropipety na bibułę chromatograficzną Whatman Nr 1. Zastosowano
metodę chromatografii wstępującej. Jako rozpuszczalnika użyto mieszaniiny
alkoholu izo-propylowego, wody i amoniaku w stosunku 10:1:1 według
metody Bennet-Clarka i wsp. autorów (1952). Chromatogramy
rozwijano w komorze zacinienowej w temperaturze 21°C do wysokości 20 cm
od punktu startowego.

Chromatogramy suszono w temperaturze pokojowej, cięto równolegle
do czoła chromatogramu na 10 dwucentymetrowych odcinków, które umiesz-
czano w małych próbownikach zawierających 1 ml 2%-owego wodnego roztworu
sacharoz. Jako kontrolę stosowano eluty z czystej bibuły, przez
któreą uprzednio przepuszczono ten sam rozpuszczalnik, którego używano
do rozwinięcia chromatogramów. Probówki te umieszczono w klinostacie
(opisanym przez Michalskiego 1958) przy szybkości obrotów 1,5
obr./min. Elucja trwała 12 godz w temperaturze 21°C.

Aktywność eluatów badano metodą owsianego testu cylindrycznego. Materiałem testowym były 4-milimetrowe odcinki koleoptyle owsa (odm.
Siegeshafer-Svalöl) hodowanego metodą Södinga (1952), ucinane giło-
tyną żyłkową w odległości 3 mm od wierzchołka. W każdej próbówce
z eluatem umieszczano po 10 odcinków koleoptyle, a następnie dzięki za-
stosowaniu eksykatora próźniowego usuwano z nich powietrze, doprowa-
dzając w ten sposób do równomiernego zanurzenia odcinków w elucie.
(Kiermayer 1956). Po usunięciu powietrza, próbówki powtórnie umiesz-
czano w klinostacie. Ruch obrotowy przyrządu zapobiegał wyginaniu się
odcinków w czasie wzrostu trwającego 20 godz. w temperaturze 21°C. Przy-
rost długości odcinków koleoptyle mierzono miarą milimetrową w rzutniku fotograficznym powiększającym 15 x.

Dla wyznaczenia wartości Rf kwasu β-indolilooctowego prowadzono równolegle chromatogram kontrolny, na który naniesiono alkoholowy roztwór kwasu β-indolilooctowego. Chromatogram ten wybarwiono wywoływaczem złożonym z FeCl₃ + HClO₄, otrzymując w efekcie różową planę odpowiadającą położeniu kwasu β-indolilooctowego. Położenie tej substancji na histogramach oznaczono symbolem IAA.

Doświadczenia wykonano w powtórzeniu trzykrotnym, a wszystkie czynności przeprowadzano w świetle ciemnoczerwonym.

Wyniki poddano analizie statystycznej obliczając średni błąd średnich przyrostów (Leopol'd 1955). Błąd ten w serii doświadczeń z liśćmi wynosił 7%, a w doświadczeniach z organami reprodukcyjnymi 5,2%.

Procent przyrostu długości odcinków koleoptyle w stosunku do kontroli był podstawą do wykreślenia histogramów. Przyrost odcinka kontrolnego przyjęto jako zero procent i przedstawiono w postaci ciągłej linii prostej. W ten sposób wartości leżące powyżej tej linii wskazują na obecność stymulatorów wzrostu, zaś leżące niżej ujawniają istnienie inhibitorów. War-
tość błędu doświadczalnego oznaczono linią przerywaną.

WYNIKI I Dyskusja

Wyniki doświadczeń przedstawiono graficznie w formie histogramów. Histogramy te pozwalają na wyodrębnienie pewnych stref odpowiadających stymulatorom względnie inhibitorom wzrostu.

Analiza ekstraktów z liści (ryc. 1)

Histogram 1 wskazuje, że liście roślin będących w fazie wegetatywnej charakteryzuje stosunkowo wysoki poziom substancji wzrostowych. Obok kwasu β-indolilooctowego występującego tu w niewielkiej ilości spotykamy kilka innych stymulatorów, z których najaktywniejszy odpowiada Rf 0,2—0,4. Charakterystyczny jest tu zupełny brak inhibitorów wzrostu.

Histogram 2 przedstawia układ stymulatorów i inhibitorów w liściach roślin tworzących pędy kwiatowe. Obserwujemy tu wyraźny spadek za-
wartości substancji wzrostowych i pojawienie się przynajmniej dwóch in-
hibitorów (Rf 0,2—0,4 i 0,9—1,0). W skład substancji wzrostowych wchodzi tu niewątpliwie kwas β-indolilooctowy, którego poziom w stosunku do wczesnej fazy rozwoju liści jest nieco większy oraz stymulator występujący w czoło chromatogramu. Dane z literatury (Sen i Leopol'd 1954, Kef-fo r d 1955) wskazują, że w ekstraktach rozdzieranych chromatograficznie przy pomocy używanych przez nas rozpuszczalników, w czołach chromato-
Ryc. 1. Analiza chromatograficzna i biologiczna regulatorów wzrostu w liściach Raphanus sativus L. w różnych fazach rozwoju rośliny

Chromatographic and biological analysis of growth regulators from leaves of Raphanus sativus L. in different stages of plant development

Histogram 1 — faza wegetatywna (vegetative condition); Histogram 2 — faza tworzenia pedu kwiatowego (the stage of bolting); Histogram 3 — faza pączków kwiatowych (the stage of flower buds formation); Histogram 4 — faza pełnego kwitnienia (the stage of full blossoming); Histogram 5 — rośliny owocujące (the fruiting plants)
gramu umiejscawia się nitryl kwasu β-indolilooctowego. Stwierdzenie to upoważnia nas zatem do zidentyfikowania stymulatora układającego się w czołach naszych chromatogramów jako nitrylu kwasu β-indolilooctowego.

Histogram 3 odzwierciedlający układ stymulatorów i inhibitorów w liściach o wykształconym pączkach kwiatowych wskazuje na znaczny wzrost zawartości kwasu β-indolilooctowego w porównaniu do wcześniejszej fazy rozwoju i nieco mniejszy przyrost wartości stymulatora identyfikowanego jako nitryl tego kwasu. Poziom inhibitorów w tej fazie rozwoju rośliny jest bardzo niski.

Histogram 4 wykreślony został na podstawie wyników uzyskanych z ekstraktów z liści pobranych z roślin w pełni kwitnienia. Poziom stymulatorów jest tu stosunkowo wysoki, widać jednak wyraźny spadek zawartości kwasu β-indolilooctowego. Ekstrakty te charakteryzowała mała zawartość inhibitorów.

Histogram 5. W liściach z roślin przekwitłych obserwujemy wyraźny spadek poziomu substancji wzrostowych. Kwas β-indolilooctowy zanika zupełnie. Nitryl tego kwasu pozostaje na ogół na poziomie właściwym dla poprzedniej fazy rozwojowej rośliny. Zawartość inhibitorów nie ulega zasadniczej zmianie. Najaktywniejszy inhibitor układa się w Rf 0,6—0,7.

Jako wskazują wyniki doświadczeń, mała zawartość kwasu β-indolilooctowego w liściach roślin pozostających w fazie wegetatywnej, zwiększa się w mierzę rozwoju roślin, osiągając maksimum w liściach roślin charakteryzujących się obecnością pączków kwiatowych, a następnie gwałtownie maleje tak, że ostatecznie w liściach roślin przekwitłych brak go zupełnie.

Stymulator zidentyfikowany jako nitryl kwasu β-indolilooctowego występuje w liściach roślin, które nie wytworzyły jeszcze pedu kwiatowego, w małych tylko ilościach. W następnej fazie rozwoju rośliny, ilość jego w liściach wzrasta i utrzymuje się na ogół na jednakowym poziomie aż do końca.

Największe zróżnicowanie jakościowe substancji wzrostowych obserwujemy w fazie pierwszej, gdzie obok kwasu β-indolilooctowego i nitrylu tego kwasu występują co najmniej dwa inne stymulatory wzrostu.

Inhibitory, które nie występują zupełnie w liściach roślin będących w fazie wegetatywnej, pojawiają się w stadium wytwarzania pączków kwiatowych i osiągają w tym okresie maksymalny poziom. W dalszych fazach rozwoju rośliny zawartość inhibitorów jest na ogół niewielka.

Jako widać z powyższego, wyniki otrzymane przez nas nie pokrywają się z danymi uzyskanymi przez H e s s a (1958). Istniejące tu rozbieżności tłumaczyć można przede wszystkim różnicami w materiale stosowanym w doświadczeniach. Zaznaczyć należy, że *Streptocarpus wendlandii*, który był obiektem badań H e s s a, posiada tylko jeden liść.
Analiza ekstraktów z organów reprodukcyjnych (ryc. 2)

Histogram 1. W ekstraktach z pączków w początkowej fazie ich rozwoju, poziom stymulatorów wzrostu okazał się niski. Spójrąd występujących tu

Ryc. 2. Analiza chromatograficzna i biologiczna regulatorów wzrostu w różnych fazach rozwoju organów reprodukcyjnych *Raphanus sativus* L.

Chromatographic and biological analysis of growth regulators from the reproductive organs of *Raphanus sativus* L. in different stages of development

Histogram 1 — początkowa faza rozwoju pączków kwiatowych (the early stage of flower buds formation); Histogram 2 — końcowa faza rozwoju pączków kwiatowych (the later stage of flower buds development); Histogram 3 — kwiaty w pełni rozwoju (mature flowers); Histogram 4 — związki owoców (the fruits in the early stage of development, 5 days after full blossom)
substancji wzrostowych przeważał kwas β-indoliloocotowy. Stosunkowo niewielka jest także zawartość inhibitorów wzrostu, które układają się tuż za linią startu i występują także w niewielkiej ilości w czołach chromatogramu.

Histogram 2 wskazuje, że w końcowej fazie rozwoju pączków, substancje wzrostowe zanikają niemal całkowicie, natomiast pojawia się szereg inhibitorów, wykazujących znaczną aktywność.

Histogram 3 obrazuje wyniki analizy ekstraktów z kwiatów w pełni rozwiniętych. W tym przypadku wyodrębniono dwie wyraźnie aktywne strzyfe. Jedną tuż za linią startu (Rf 0,0–0,3) wskazującą na obecność inhibitora, drugą (Rf 0,6–0,9) wskazującą na obecność substancji wzrostowej, a przede wszystkim kwasu β-indoliloocotowego. Należy przypuszczać, że obserwowany tu układ schodkowy linii histogramu powyżej położenia kwasu β-indoliloocotowego jest wynikiem nierównomiernego rozmieszczenia substancji na chromatogramie. Tego rodzaju zjawisko ujawniające się w formie rozciągniętej plamy obserwuje się zwykle, gdy badana substancja występuje w większej ilości. Na tej podstawie możemy wnioskować, że poziom kwasu β-indoliloocotowego był w tym przypadku szczególnie wysoki.

Wyniki doświadczeń wskazują, że substancje wzrostowe występują przede wszystkim w postaci kwasu β-indoliloocotowego. Zawartość tej substancji w pączkach kwiatowych we wczesnym stadium ich rozwoju jest mała, a w pączkach starszych zanika całkowicie. Najwyższy poziom osiąga kwas β-indoliloocotowy w ekstrakach z kwiatów w pełni ich rozwoju.

Dane te potwierdzają więc w pewnym stopniu wyniki doświadczeń M u i r a 1942 (cyt. Söding 1952) nad tytoniem, Södinga (1952) nad Heliopsis i Cephalaria oraz Nitschow (1956) nad fasolą, według których nie zapłonione załóżnie charakteryzuje niski poziom auksyn, natomiast po zapłonieniu ilość tych związków wyraźnie wzrasta. Niewątpliwie, w naszych doświadczeniach, w których poddawaliśmy analizie całe kwiaty, należy spodziewać się, że pewna część kwasu β-indoliloocotowego pochodzi z pąrk, który jak wykazały badania Michaeliego (1958) in. jest dość zasobny w ten związek.

Po przekwitnieniu roślin, w ekstrakach z związków owoców, poziom substancji wzrostowych obniża się, a kwas β-indoliloocotowy występuje w ilościach zawartych w granicach blisko doświadczalnego. Zjawisko obniżania
się poziomu auksyn w trakcie dojrzewania owoców opisuje szereg autorów cytowanych przez Södinga (1952). Ostatnio stwierdzili to także Miamult (1956) u gruszy i wiśni oraz Nitschowie (1956) u fasoli.

W tej fazie rozwoju charakterystyczne jest pojawienie się stymulatora układającego się w czołegal chromatogramu, który można zidentyfikować jako nitryl kwasu β-indoliloocowego.

Na uwagę zasługuje fakt, że inhibitory wzrostu występują we wszystkich fazach rozwoju kwiatu. Inhibiterm, który wystąpił we wszystkich wariantach była substancja umiejscowiona bezpośrednio za linią startu.

Najwyższy poziom inhibitorów i największe ich zróżnicowanie pod względem jakościowym obserwujemy w ekstraktach z pączków starszych, które charakteryzuje zupełny brak substancji wzrostowych.

Należy także porównać poziom stymulatorów i inhibitorów wzrostu w liściach i organach reprodukcyjnych. Istotne jest, że podczas gdy w pączkach starszych substancje wzrostowe zanikają niemal zupełnie, liście tych roślin charakteryzuje najwyższy poziom kwasu β-indoliloocowego. Uwagę zwraca także fakt, że we wszystkich fazach rozwoju roślin, w liściach ich występuje stosunkowo duża ilość stymulatora zidentyfikowanego jako nitryl kwasu β-indoliloocowego, gdy tymczasem w organach reprodukcyjnych brak go niemal zupełnie. Stymulator ten pojawia się dopiero w zawiązkach owoców — już po przekwitnieniu rośliny.

Wyniki pracy niniejszej potwierdzają tezę tych autorów, którzy regulatorom wzrostu przypisują ważną rolę w rozwoju rośliny, zwłaszcza w procesach prowadzących do zakwitania. Wyniki badań przedstawione w niniejszej pracy potwierdzają niewątpliwie istnienie wyraźnej zależności między określoną fazą rozwoju rośliny, a poziomem stymulatorów i inhibitorów wzrostu zawartych w liściach i organach reprodukcyjnych.

STRESZCZENIE

Przeprowadzono chromatograficzną i biologiczną analizę regulatorów wzrostu zawartych w ekstraktach alkoholowych z liści i organów reprodukcyjnych rzodkiewki w różnych etapach jej rozwoju.

1. W wyniku doświadczeń stwierdzono istnienie wyraźnej zależności między określoną fazą rozwoju rośliny a poziomem stymulatorów i inhibitorów wzrostu występujących w tych organach.

2. Ekstrakty z liści i z organów reprodukcyjnych charakteryzowały obecność stymulatorów i inhibitorów wzrostu. Wśród stymulatorów wykryto kwas β-indoliloocowy oraz stymulator składający się w czołegal chromatogramu, odpowiadający swym położeniem nitryłowowi tego kwasu. Szczegółowej analizy inhibitorów nie prowadzono.
3. Analiza wykazała, że liście roślin w fazie wegetatywnej charakteryzują największe zróżnicowanie jakościowe stymulatorów wzrostu. Stwierdzono tu obecność kilku substancji wzrostowych o stosunkowo wysokiej aktywności oraz zupełny brak inhibitorów wzrostu.

W liściach roślin tworzących pędy kwiatowe obserwowano mniejszą zawartość substancji wzrostowych oraz pojawienie się przynajmniej dwóch inhibitorów. Poziom inhibitorów osiągał w tej fazie rozwoju rośliny najwyższą wartość.

Stymulatory wzrostu w liściach zebranych z roślin o definutywnie wykształconych pączkach kwiatowych występują w postaci kwasu β-indoliloocowych oraz w formie nitrylu tego związku. Obie te substancje charakteryzują wysoka aktywność. Zawartość inhibitorów jest tu stosunkowo niewielka.

W ekstraktach z liści roślin w pełni kwitnienia zawartość stymulatorów wzrostu kształtuję się na stosunkowo wysokim poziomie, jednak w porównaniu z poprzednią fazą rozwoju obserwujemy tu znaczne zmniejszenie ilości kwasu β-indoliloocowego. Poziom inhibitorów osiąga wartość zbliżoną do wartości charakterystycznej dla fazy poprzedniej.

W liściach roślin przekwitłych obserwujemy znaczny spadek zawartości substancji wzrostowych. Poziom inhibitorów nie ulega tu żadnej zasadniczej zmianie.

4. Stymulatory wzrostu występują w ekstraktach z organów produkcyjnych głównie w postaci kwasu β-indoliloocowego. W zawiązkach owoców pojawia się natomiast stymulator ukladający się w czołach chromatogramu, odpowiadający położeniu nitrylowi kwasu β-indoliloocowego. Charakterystyczne jest występowanie we wszystkich fazach rozwoju kwiatu inhibitora ukladającego się bezpośrednio za linią startu.

Ekstrakty z młodych pączków charakteryzował stosunkowo niski poziom zarówno stymulatorów, jak i inhibitorów wzrostu.

W pączkach starszych stymulatory zanikają całkowicie, natomiast pojawia się kilka inhibitorów, które wykazują tu najwyższą aktywność i zróżnicowanie.

Chromatogramy uzyskane z kwiatów w pełni rozwiniętych charakteryzują duża zawartość i aktywność kwasu β-indoliloocowego, osiągającego w tym stadium rozwoju rośliny najwyższy poziom. W porównaniu do poprzedniej fazy rozwojowej obserwujemy mniejszą zawartość i zróżnicowanie inhibitorów.

Zawiaski owoców charakteryzuje silnie obniżony poziom stymulatorów wzrostu. Wyraźnie występuje tu tylko stymulator odpowiadający położeniu nitrylowi kwasu β-indoliloocowego. W fazie tej notowano ponowne zwiększanie się ilości i zróżnicowanie jakościowe inhibitorów.
5. W wyniku badań stwierdzono bardzo istotne różnice w zawartości kwasu β-indoliloocztowego w poszczególnych fazach rozwoju rośliny, co wskazuje na zasadniczą rolę tego związku w rozwoju ontogenetycznym rośliny.

Zakład Fizjologii Roślin UMK
w Toruniu

(Wpłynęło 30.IX.1958.)

SUMMARY

Chromatographic and biological analyses of growth regulators contained in alcohol extracts from leaves and of the reproductive organs of the radish in different stages of plant development were carried out.

As material for experiments the radish *Raphanus sativus* L. var. *radicula* DC. S a x a. was used.

The leaves collected from plants in the vegetative condition, in the bolting stage, in the later stage of flower buds development, from plants in the stage of full blossoming and after blossoming, were investigated.

In the second experiment, the reproductive organs were analysed. Flower buds in the early and later stage of development were examined, as well as flowers in the stage of full blossoming and fruit setting.

The extraction from frozen material (−10°C.) was carried out in anhydrous ethanol. Extracts were separated using the method of ascending chromatography on Whatman paper No 1 using as solvent a mixture of iso-propyl alcohol — ammonia — water (10:1:1). *Bennett* et al. (1952). Developed chromatograms were divided into 10 sections 2 cm long and eluted in a test tube clinostate for 12 hours in sucrose solution.

The activity of eluates of separate sections of chromatograms was examined by means of the avena coleoptile test. As test material ten 4 mm sections of oats coleoptile (Victory oats — Svalöf), grown according to the *Söding* method (1952) were used each time. The, thus prepared, experimental material was rotated again for 20 hours in a test tube clinostate. The increase in length of the coleoptile sections was measured on a millimetre scale in 15 times magnification in a photographic enlarger.

The experiment was performed three times, each operation being performed in dark red light.

The Rf value for IAA was determined from a control chromatogram stained with developer composed of HClO₄—FeCl₃. The results were used to draw histograms. The increase of control sections was assumed as 0. The value of experimental error was shown by a broken line.

1. The result of the experiments showed the existence of a definite dependence between the defined stage of plant development and the level of stimulants and inhibitors of growth appering in these organs.
2. Extracts from leaves and reproductive organs were characterized by the presence of stimulants and inhibitors of growth. Among the stimulants was discovered IAA and the stimulant formed at the head of the chromatogram, corresponding, in its position with the nitril of this acid. Detailed analysis of inhibitors was not carried out.

3. The analysis showed that the plant leaves in the vegetative condition are characterized by the greatest qualitative differentiation of growth stimulants. The presence of several growth substances with relatively high activity was observed and a complete lack of growth inhibitors.

In the leaves of plants forming flower shoots a smaller content of growth substances and the appearance of at least two inhibitors was observed. The level of inhibitors was the highest in this stage of development.

Growth stimulants in the leaves collected from plants with definitely formed flower buds appear in the form of IAA and in the form of nitril of this compound. Both substances are characterized by great activity. The content of inhibitors is relatively small.

In the extracts from leaves of plants in full bloom the content of growth stimulants is relatively high, though compared with the previous stage of development we observe a large decrease in the amount of IAA. The level of inhibitors reaches a value nearing that characteristic for the previous stage.

In the leaves of plants after blossoming a definite decrease of content of growth substances may be observed. The level of inhibitors does not essentially change.

4. Growth stimulants appear in the extracts of reproductive organs chiefly as IAA. In the young fruits there appears a stimulant at the head of the chromatogram, corresponding in its position to the nitril of IAA. The appearance of an inhibitor directly behind the starting line in all the stages of flower development is characteristic. Extracts from young buds were characterized by a relatively low level of both growth stimulants and inhibitors.

In older buds stimulants disappear completely, but several inhibitors appear showing here the greatest activity and differentiation.

Chromatograms obtained from flowers in full blossoming are characterized by a large content and activity of IAA, reaching in this stage of plant development the highest level. Compared to the previous stage of development a smaller content and differentiation of inhibitors may be observed.

The young fruit are characterized by a considerably lowered level of growth stimulants. Only the stimulant corresponding in its position with nitril of IAA appears here distinctly. In this stage a renewed increase in the quantity and quality differentiation of inhibitors may be noted.
5. As a result of the investigation the essential differences in the content of IAA in the individual stages of plant development were observed which indicate the fundamental role of this compound in the ontogenetic development of the plant.

LITERATURA

