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Abstract
The article describes the current knowledge about the impact of nanoparticles on 
plant development with a particular emphasis on crop plants. Nanotechnology is 
an intensively developing field of science. This is due to the enormous hopes that 
have been placed on the achievements of nanotechnology in various areas of life. 
Increasingly, it has been noted that apart from the future benefits of nanotechnol-
ogy in our everyday life, nanoparticles (NPs) may also have adverse effects that 
have not been sufficiently explored and understood. Most analyses to date have 
been focused on the influence of nanomaterials on the physiological processes 
primarily in animals, humans and bacteria. Although our knowledge about the 
influence of NPs on the development of plants is considerably smaller, the current 
views are presented below. Such knowledge is extremely important since NPs can 
enter the food chain, which may have an influence on human health.
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The father of nanotechnology is the Nobel Prize-winning physicist Richard Feynman 
who pointed out in his lecture in 1959 that it was possible to obtain nanomaterials 
[1], but the first time the term “nanotechnology” was defined by Norio Taniguchi in 
1974 [2]. The definition of nanomaterials is still evolving and currently assumes that 
nanoparticles (NPs) are insoluble or biopersistent materials (objects) that are pro-
duced intentionally and that have one or more external dimensions or an internal 
structure on a scale from 1 nm to 100 nm [3]. Within this group of materials are 
NPs, which have at least two dimensions on the nanoscale [4]. The basis of the 100 
nm limit is the fact that the novel properties that differentiate particles from bulk 
material typically develop at a critical length scale of under 100 nm [5]. However, it 
must be taken into account that according to the researchers the current limit of 100 
nanometers, which is the basis for the dimensions of NPs, is now out of date and that 
any new regulations that are created should be based on the newer, more advanced 
systematics. This is because sometimes additives have almost identical characteristics 
as “normally” produced chemicals when reduced to the nanoscale and that the syn-
thesized NPs of the same material have completely different properties depending on 
the size of the particles.
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Nanotechnology is an innovative and promising field of interdisciplinary studies. 
It opens up a wide range of possible uses in various areas of industry and science, 
such as medicine, pharmacology, electronics, biology, and plant breeding [6,7]. The 
rapidly developing commercial and industrial usage of nanotechnology has led to the 
increased emission of nanoparticles into the environment and inevitably to different 
effects on living organisms, which have been analyzed less in the case of plants [8]. 
The current state of the art indicates that nanomaterials may cause adverse effects and 
that these are not yet fully explored and understood. A new field of knowledge, “nano-
toxicology”, which has recently developed [3], has confirmed the need to analyze the 
influence of nanomaterials on living organisms. However, before the degree of toxicity 
of nanoparticles can be determined, detailed analyses of the uptake of nanoparticles 
by living organisms and their movement within the body at different levels of orga-
nization – the organs, tissues, cells, and molecular level – should be described.

Although nanoparticles have always been present in the environment and their 
natural sources include, among others, active volcanoes, forest fires, or dust storms, 
the development of nanotechnology has contributed to a significant increase in their 
presence in the environment because they are either produced intentionally and/or 
as a result of technological processes such as welding, metal smelting, soldering, in 
combustion engines, in heating and power plants, cooking, grilling, or in laser office 
devices [9]. Nanomaterials are used in many different industrial fields such as elec-
tronics [10,11], medicine [12,13], cosmetology, agriculture, the food industry, and 
construction [14]. The volume of world production of nanomaterials was 2000 tonnes 
in 2004 and according to forecasts this number is predicted to increase more than 25 
times for the period of 2011–2020 [15].

The rapidly increasing numbers of reports on the accumulation of nanomateri-
als in the environment point out the fact that the fate of NPs in the environment is 
not fully known and understood [16]. Analyses have mainly related to the study of 
the impact of nanomaterials on animals and bacteria and our knowledge about their 
effects on plants is very poor. Analysis of the effects of nanoparticles on living organ-
isms cannot be compared, for example, to the effects of heavy metals that have been 
tested, since nanoparticles are different than the basic material in the atomic structure 
and their physico-chemical and biological properties are also different [17]. The need 
to identify any threats that are connected with developing nanotechnology is beyond 
dispute.

Nanoparticles and plant growth

In recent years, numerous studies have been conducted in order to analyze and de-
scribe the influence of nanoparticles on plant growth and development and many 
of them examined this problem on the example of crop plants. Many studies have 
been performed on the impact of NPs on the physiological/metabolic processes (for 
review see [18,19]) that directly influence plant growth and that is why this paper is 
only devoted to the effects of NPs on plant growth and development that have been 
described.

An investigation of the response of six crop species: barley, maize, rice, soybean, 
switchgrass, tomato, and tobacco cell cultures to exposure to single-walled carbon 
nanohorns (SWCNHs) showed that these types of nanomaterials accelerate seed ger-
mination of some crops studied and enhance the growth of different organs of corn, 
tomato, rice, and soybean [20]. Moreover, the growth of tobacco cells increased in 
response to SWCNHs. Analysis at the genetic level indicated that SWCNHs were able 
to affect the expression of a number of tomato genes that are involved in the cellular 
and metabolic response of cells to stress conditions [20]. Jasmine rice that had been 
treated with different sizes and concentrations of silver nanoparticles (AgNPs) showed 
a positive correlation between the size of the nanoparticles and a decrease in seedling 
growth [21]. It was also shown that accumulations of AgNPs were higher in the plant 
tissues of rice that had been treated with smaller AgNPs (20 nm diameter) and that the 
nanoparticles were retained in the roots rather than being translocated to the leaves 
[21]. Other examples of studies that have described the effects of nanomaterials on 
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plant development include those that have been conducted on the roots and aboveg-
round parts of red spinach, lettuce, and cucumber. These researches showed a consid-
erable reduction in root growth after exposure to 1000 mg/L and 2000 mg/L of carbon 
nanotubes [7]. Red spinach and lettuce were the most sensitive to such treatment, 
while rice and cucumber were less sensitive. On the other hand, chili, lady’s finger, 
and soybean were neutral to such treatment [7]. The influence of five different types 
of nanoparticles such as multi-walled carbon nanotubes, aluminium, alumina, zinc 
and zinc oxide on seed germination and root growth of radish, rape, ryegrass, lettuce, 
corn, and cucumber has also been studied. The results obtained showed that seed 
germination was only affected in the case of ryegrass and corn. The reduction in root 
growth varied depending on the species and the type of nanoparticles [22]. Analysis 
of the effect of nano-CuO on rice showed that seed germination was significantly 
reduced and that there was damage to the root cells, an increase in H2O2, an accu-
mulation of proline, and a decrease in the level of carotenoids [23]. The response of 
asparagus to AgNPs included an increase in the content of ascorbate and chlorophyll 
[24]. Treatment of soybean with nano-iron particles caused an increase in dry weight 
and productivity [25]. The application of TiO2-NPs of different sizes to wheat plants 
showed that even when NPs were accumulated within the root, there was no influ-
ence on seed germination, biomass and transpiration nor there was any modification 
of photosynthesis or the induction of oxidative stress, and the stimulation of root 
growth was even observed [26]. A rapid inhibition of leaf growth and transpiration 
was detected in the case of Zea mays L. seedlings after they had been exposed to natu-
rally derived bentonite clay or industrially produced TiO2 nanoparticles [27]. ZnO 
nanoparticles in Lolium perenne caused a reduction of biomass, shrinkage of the root, 
and cytological changes in the root cortical cells [22]. Other studies have shown that 
different concentrations of AuNPs have no effect on seed germination of barley, but 
they had a strong impact on plant growth, which resulted in lower production of bio-
mass [28]. Analysis of single-bilayer graphene oxide sheets of different sizes supplied 
at different concentrations showed a dose-dependent effect during the germination of 
Vicia faba L. [29]. A significant negative impact of a high concentration of graphene 
oxide was indicated by a reduction in the growth parameters of Vicia faba plants, 
although low concentrations improved the health status of the plants [29].

Field experiments on Brassica juncea that had been treated with AuNPs showed 
a positive effect on plant height, stem diameter, and the number of branches [30]. In 
Cucurbita pepo plants that had been treated with AgNPs and CuNPs, a decrease in 
growth was observed [31]. Recently, some studies have been performed on the influ-
ence of AgNPs on radish sprouts [18]. It was shown that seed germination was not 
affected although changes in the chemical composition of the cell wall were observed, 
which confirms that changes due to the influence of NPs take place at the cellular and 
molecular levels. Treatment of tomato seeds and seedlings with CoFe2O4 NPs did not 
decrease the germination of seeds [32]. The same study showed that such treatment 
did not have a negative influence on root growth [32].

Quantum dots (QDs) are other nanomaterials that are widely used as promising 
tools for imaging the structure of cells and in vivo cell tracking. Studies on the influ-
ence of QDs on a Medicago sativa culture in vitro showed a negative influence of QDs 
and that the response of plant cells was dose-dependent [33]. Rice root growth was 
enhanced by silica that had been coated with QDs [34], however, germination was 
inhibited [35]. To date, studies that are devoted to the analysis of the influence of QDs 
on plants are rather limited and this means that our knowledge is incomplete. One 
gets the impression that the harmful effects of QDs on plant development is stronger 
in comparison to other types of NPs. This indicates that more studies are needed and/
or a limitation of their wide scale application is necessary.

In the case of crop plants, knowledge about the bioaccumulation and accumulation 
of nanoparticles in food crops is limited, although it is important to point out the pos-
sibility that nanoparticles may have an influence on human health.

The literature data presented above leads to the conclusion that the results that 
have been obtained to date are inconsistent (which is probably due to the fact that only 
a small number of studies have been done, only a few species have been investigated, 
different growth conditions have been studied and different nanoparticles have been 
used), and therefore generalizations about the effects of nanoparticles on plant growth 
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processes cannot be made. At present, a picture emerges which shows that under the 
influence of nanomaterials there may be stimulation, inhibition, or no effect on the 
growth processes and thus on plant development, including crop plants.

Routes of NPs entry and movement within the body of plants

A study of Cucurbita maxima plants that had been treated hydroponically with Fe3O4 
showed the absorption, translocation, and accumulation of the nanoparticles in the 
plant tissues [36], but the same treatment of Phaseolus limensis plants did not cause 
the same reaction as in the case of pumpkin [36], thus indicating that the response of 
plants to nanoparticles is variable and depends on the plant species, age and internal 
and external conditions.

In rice plants after treatment with fullerene C70, uptake, translocation, and even its 
presence in seeds that had developed on the treated plants were described [37].

Catharanthus roseus protoplasts were used to study the influence of multi-walled 
carbon nanotubes (MWCNTs). It was shown that these nanomaterials penetrated 
the cell membrane of an identified endosome-escaping uptake mode and that MW-
CNTs shorter than 100 nm were present in different cell compartments, including the 
nucleus, plastids, and vacuoles [38]. Artificial polystyrene nano-spheres (40 nm) and 
CdSe/ZnS quantum dots (20 nm) were taken up by sycamore protoplasts via fluid-
phase endocytosis [39]. A very interesting result from these studies was the dem-
onstration of the sequestration of different nanoparticles in different cell organelles 
[39]. It should be taken into consideration that the response and absorption of NPs 
or QDs in the system of a protoplast culture may be different in comparison to a cell 
with walls.

Carbon nanotubes (CNTs) were detected inside tomato seeds, which suggests that 
the seed coat is not a barrier for this nanomaterial [40]. The results obtained may 
suggest that CNTs support water uptake inside seeds, which can explain the positive 
influence on the seed germination and growth of tomato seedlings that was detected 
[40].

It is widely postulated that nanoparticles are collected and accumulated in plants, 
although the mechanism of such accumulation and the route of the movement of 
nanoparticles have not yet been fully explained and documented. In studies of this 
kind, in which nanoparticles are served on the surface of an organ, the chemical na-
ture of the wall and wall pore size, which determine the possibility of nanoparticles 
breaching the wall, the first barrier in the way environment–plant must be taken 
into account [41]. The above values indicate that particles with a diameter greater 
than the cell wall pore size cannot breach the wall barriers. However, much literature 
data has indicated the localization of nanoparticles inside the plant body. It has been 
postulated that NPs are adsorbed on plant surfaces [3]. Other ways through which 
nanoparticles enter the body of plants is not fully understood. It is obvious that NPs 
can be deposited on aboveground plant parts such as epicuticular cavities or between 
trichomes. NPs can also enter a plant through the stomata. However, the NPs should 
be deposited on the outer periclinal walls of the epidermal cells, at least those NPs 
whose dimensions are greater than the cell wall pore size, and such behavior should 
also characterize the underground plant organs.

Treatment of Triticum aestivum with TiO2-NPs indicated that roots can only ac-
cumulate NPs up to 140 nm in diameter and that NPs are accumulated in the wheat 
root parenchyma, but translocation to other root tissues, especially to the stele, was 
not detected, which means that translocation to the shoot is not possible [26].

An accumulation of nanoparticles in the roots of pumpkin [36], soybean, tomato, 
cucumber, maize, alfalfa, rice, and bean has been detected [42–45]. An interesting 
conclusion/question that arises from these experiments concerns the mutual correla-
tion between the dimensions of nanoparticles and the pore size of the cell wall, because 
the statement presented above indicates that NPs can be accumulated in the organs 
of plants even when their dimensions exceed the cell wall pore exclusion limit.

In Arabidopsis thaliana (not a crop plant, but it is important due to the possibility 
of the use of this plant in explaining the molecular mechanisms that underlie the 
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influence of NPs on plant behavior because of the large number of mutants and trans-
genic lines), different doses of Ag nanoparticles of different sizes (20, 40, and 80 nm) 
affected plant growth and the location of the nanoparticles in tissues and cells was 
investigated [46]. Studies have shown that under the influence of nanoparticles, the 
first macroscopically visible sign was a browning of the surface of the root cap cells. 
Analysis of the distribution of these nanoparticles in the plant showed their presence 
in the root cap cells and other tissues of the root.

Some authors have postulated the involvement of plasmodesmata (PD) in the 
movement of NPs within the body of a plant [37,46]. In rice treated with carbon 
nanoparticles 40–70 nm in size, the PD are engaged in the movement of nanomateri-
als between the cells of different tissues [37].

In regard to the participation of PD in the movement of nanoparticles with such 
a large diameter (40 nm), additional studies are necessary. The diameter of the plas-
modesmata is 25–50 nm, although it is necessary to take into consideration that the 
transport channels within the cytoplasmic sleeve have a diameter of between 1.5 and 
4 nm [38]. When we assume that nanoparticles move through cytoplasm by diffusion, 
they should pass the PD via the above-mentioned microchannels. This means that 
40 nm nanoparticles cannot go through the PD, at least via the mechanism of simple 
diffusion. If this is the case, this means that perhaps NPs trigger new mechanisms that 
allow such a movement through the PD or some other possibilities must be consid-
ered as the pathway of the movement of NPs within the body of a plant.

From the above-mentioned results, it appears that nanoparticles can penetrate the 
cell wall of plants. The most important questions that arise from such results con-
cern the mechanism that regulates a cell’s “answer” to the presence of nanoparticles. 
Namely, if NPs can penetrate the cell wall, which is characterized by a much smaller 
pore diameter than the dimensions of the particles, it suggests that some adaptive 
mechanism must have been developed that led to such a modification of the cell wall 
which allows the penetration of NPs. Without answers to the above questions, our 
knowledge will not be complete. To answer these questions, more investigations on 
more plant species and types of nanoparticles must be performed, before any general 
conclusions can be formulated.

Conclusion and future prospects

Nanotechnology can have positive and diverse effects on living organisms. Because of 
the possibility of a negative impact of nanoparticles on plant growth, it is necessary 
to carefully examine the relationship of NPs and plant organisms. Such knowledge is 
important from both an economic and societal point of view. Thus, the fate of various 
NPs in different plant species requires further investigation.

Undoubtedly, nanotechnology can provide “tools” to improve the properties of 
plants, their productivity and their resistance to many internal and external factors. 
However, because of the possibility of harmful effects of NPs on plants, there is a 
need for a great deal of research that would allow wise use of this new technology. 
Such a need is due to the fact that the influence of NPs on plant growth can be posi-
tive or negative and that this depends on the type of nanoparticle (as it determines 
their physical and chemical properties), the dosage of NPs, the time of treatment, the 
plant species, the stage of development, and many other factors (Tab. 1; for review see 
[47]).

From the results presented above, it appears that much more work is needed to 
understand the impact of NPs on plants at different organization levels – from mor-
phology, histology, physiology and biochemistry to the molecular level. In order to 
understand the interaction of NPs with the different molecules that are present in 
plant cells, studies on the analysis of any changes in gene expression under the influ-
ence of nanoparticles are also necessary.
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Tab. 1 Summary of the influence of some nanoparticles on some crop plants.

Nanoparticles No influence Positive influence Negative influence References

Oxide nanoparticles

Silicon dioxide Triticum aestivum Triticum aestivum Zea mays [26,27]

Zinc oxide Zea mays, Lolium 
perenne

[22]

Iron magnetite Cucurbita maxima Glycine max [26,36]

Nano-CuO Oryza sativa [23]

Carbon nanomaterials

Carbon nanohorns Zea mays, Solanum lyco-
persicum, Oryza sativa, 
Glycine max

[20]

Carbon nanotubes Spinacia oleracea, 
Lactuca sativa, Cucu-
mis sativus, Solanum 
lycopersicum

[7,40]

Graphene oxide (low or 
high) concentration

Vicia faba [29]

Metal nanoparticles

Gold Hordeum vulgare – seed 
germination

Brassica juncea Hordeum vulgare – bio-
mass production

[28,30]

Silver Asparagus officinalis, 
Oryza (jasmin rice)

Cucurbita pepo, Rapha-
nus sativus

[18,21,24,31]

Zinc Lolium perenne [22]

Copper Cucurbita pepo [31]

Quantum dots

Mercaptopro-panoic 
acid coated CdSe/ZnS

Oryza L. – seed germi-
nation, Medicago sativa

[33,35]

Silica coated CdTe Oryza sativa [34]
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Zróżnicowany wpływ nanocząstek na wzrost roślin, ze szczególnym uwzględnieniem 
roślin uprawnych

Streszczenie

W artykule przedstawiono aktualny stan wiedzy na temat wpływu nanocząstek na rozwój roślin, 
ze szczególnym uwzględnieniem roślin uprawnych. Nanotechnologia jest intensywnie rozwija-
jącą się dziedziną nauki, co wynika z ogromnych nadziei pokładanych w osiągnięcia nanotech-
nologii w różnych dziedzinach życia. Coraz częściej wskazuje się, że poza dobrodziejstwami 
jakie w codziennym życiu przynoszą nam nanomateriały, mogą one również wywoływać nie-
pożądane efekty, a te nie są jeszcze w pełni zbadane i wyjaśnione. Większość przeprowadzonych 
do tej pory analiz koncentruje się na wpływie nanomateriałów na procesy fizjologiczne przede 
wszystkim u zwierząt, ludzi i bakterii. Wiedza na temat wpływu nanocząstek (NPs) na rozwój 
roślin jest znacznie skromniejsza, a obecne badania i poglądy przedstawione zostały w poniż-
szej pracy. Wiedza ta jest bardzo ważna, ponieważ NPs mogą wejść do łańcucha pokarmowego, 
co może mieć wpływ na zdrowie ludzi.
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