GEITONOGAMIA WEWNĘTRZNA

Internal geitonogamy

Małgorzata FLIS, Andrzej JANKUN

Summary. Geitonogamy (the pollination between flowers on the same plant) has important implications for sex-allocation theory, the evolution of dioecy and other issues in evolutionary biology. Internal geitonogamy is a unique self-pollination system that occurs in the genus Callitriche L. In this system self-fertilization is effected by pollen tube growth through vegetative tissues from the staminate to pistillate flowers. Internal geitonogamy occurs in seven of ca 50 species of Callitriche (C. heterophylla Pursh, C. heteropoda Engelm., C. lechleri (Hegelm.) Fassett, C. rubigena Fassett, C. rimosas Fassett, C. trocholearis Fassett, C. verna L.). Internal geitonogamy is correlated with the amphibious growth habit and polyplody. However, not all polyploid amphibious species of Callitriche have internal geitonogamy. Correlation between internal geitonogamy and geographic distribution is not apparent. There is a tendency for species that possess internal geitonogamy to occur at higher elevations than those that lack this system. Callitriche is the genus in which aerial, water surface, and submerged pollination systems are all reported. Geitonogamy, the primary mode of pollination in this genus, can be realized in two ways: 1), with contact between anther and stigma („contacters“); 2), without contact between anther and stigma („non-contacters“).

Key words: Callitriche, geitonogamy, internal geitonogamy, pollination

Mgr Małgorzata Flis, dr hab. Andrzej Jankun, Zakład Cytologii i Embriologii Roślin, Instytut Botaniki, Uniwersytet Jagielloński, ul. Grodzka 52, 31-044 Kraków, e-mail: flisma@grodzki.phil.uj.edu.pl

Geitonogamią (zapylaniem sąsiedzkim) określa się proces samo zapylenia zachodzący między dwoma różnymi kwiatami tej samej rośliny, w odróżnieniu od autogamii (samozapyla nie s.str.), która dotyczy zapylania w obrębie tego samego kwiatu danej rośliny. Termin zapylenie w tym przypadku oznacza nie tylko przeniesienie ziarna pyłku na znaną słupka [48], lecz również wniknięcie do zalążni słupka łągiewki pylkowej kiełkującej z ziarna pyłku znajdującego się w pylniku.

Proces geitonogamii został po raz pierwszy opisany w 1921 r. przez Kernera u Chaerophyllum aromaticum L. [34]. U wspomnianej rośliny większość kwiatów w obrębie baldachu stanowią kwiaty męskie (ok. 20), pozostałe to kwiaty hermafrodytyczne, z których jeden zajmuje położenie centralne, a trzy do pięciu kwiatów − położenie brzegowe. Pyłek z pylników kwiatów męskich wysypuje się bezpośrednio na receptywne známiona kwiatów hermafrodytycznych, które po uprzednim wysypaniu własnego pyłku są już w fazie żeńskiej (Ryc. 1).

Geitonogamia zachodzi pomiędzy kwiatami danego kwiatostanu, danego pędu, lub kwiatami na różnych pędcach tej samej rośliny. Nätzenie geitonogamii zależy od szeregu czynników, np.: liczby kwiatów na danej roślinie odwiedzanych przez zapylacza, liczby kwiatów receptywnych w tym samym czasie na danym osobniku, obecności nektaru w kwiece, ilości pyłku przenoszonego z jednego kwiatu na drugi podczas jednej wizyty zapylacza, występowania heterostylii i innych podobnych mechanizmów [18, 19, 25, 26]. U niektórych roślin geitonogamia stanowi znaczny procent efektywnych zapileń, np. u Impatiens pallida Nutt. wynosi on ponad 40%, podczas gdy autogamia jedynie ok. 2% [18]. W badanych pod tym względem storczyków procent pollinii przenoszonych geitonogamicznie
Ryc. 1. *Chaerophyllum aromaticum* L. a – kwiaty hermafrodytyczne otwarte, kwiaty męskie jeszcze zamknięte; b – kwiaty męskie otwarte, wysypujące pylek na narniona kwiatów hermafrodytycznych, które są już w fazie żeńskiej (wg [34], zmodyfikowane).

Fig. 1. *Chaerophyllum aromaticum* L. a – open hermaphroditic flowers, male flowers still closed; b – male flowers open and dropping pollen on the stigmas of the hermaphroditic flowers, which already have lost their stamens (after [34], modified).

waha się od 22% w rodzaju *Prasophyllum* P. Br. Prod., do 30% w rodzaju *Aerangis* Reich. i 50% u *Microtis parviflora* R. Br. Prod. [25]. Należy również zaznaczyć, że geitonogamia może prowadzić do rozwoju nielicznych nasion u roślin samoniezgodnych, np. u *Plantago lanceolata* L. [17].

Geitonogamia jako jeden z systemów samo- zapyłania (obok autogamii) przez wiele lat nie była przedmiotem szczególnego zainteresowania ekologów zapyłania, hodowców i ewolucjonistów. Dopiero w latach osiemdziesiątych zwrócono uwagę na wielkie znaczenie wspomnianego procesu dla teorii inwestowania w płcie (ang.: sex allocation theory), ewolucji dwupienności i innych dziedzin biologii ewolucyjnej [17, 18]. Zapylenie geitonogamiczne ma następujące potencjalne zalety w reprodukcji roślin: pociąga za sobą automatyczną selekcję alleliletalnych, zapewnia rozmnażanie generatywne w warunkach, kiedy zapylenie krzyżowe jest niemożliwe oraz produkcję potomstwa przystosowanego do lokalnych warunków środowiskowych [29].

Jednak geitonogamia wywiera również niekorzystne efekty na sukcesy reprodukcyjne roślin [5, 25]. Redukuje np. eksport pylek przez rośliny, co z kolei ma wpływ na rozprzestrzenianie się genotypów i alleli, czyli genetyczną strukturę populacji. U samoniezgodnych hermafrodytycznych gatunków nie ma zwrotów kosztów płytku pozostawionego w obrębie rośliny, a więc następuje strata płytku i redukcja efektywności płci męskiej [4, 18]. U tych roślin może nastąpić na skutek geitonogamii obniżenie ilości wytwarzanych nasion [18]. Natomiast u roślin samozgodnych geitonogamiczne samozałanianie wywiera efekty niekorzystne, jeśli potomstwo wsobne ma mniejszą żywotność i płodność od potomstwa powstałego po zapyleniu krzyżowym (np. u *Decodon verticilatus* Ell. Sketch), czyli jeśli ujawnia się depresja wsobna [19].

Sukcesy reprodukcyjne płci męskiej czy żeńskiej są podstawą inwestycji zasobów w płcie [8]. Wpływ geitonogamii na zmianę sukcesów reprodukcyjnych obu płci stwierdzili Rademaker i de Jong [46]. Dalsze badania potwierdziły, że rośliny, których kwiaty zapylane są w dużym stopniu przez własny pylek, często w wyniku geitonogamii, mniej inwestują w płcie męskie niż w żeńską w porównaniu z gatunkami, u których możliwe jest wyłącznie zapylenie krzyżowe [7, 17].

Geitonogamia jest możliwa tylko u roślin obupłciowych, co sugeruje, że ten system zapylenia odegrał dużą rolę w ewolucji dwupienności [14, 16]. Dwupienność mogła wywoływać pod wpływem silnej depresji wsobnej, jako mechanizm obronny przed samozapłodnieniem u roślin samozgodnych. Pogląd ten budzi pewne wątpliwości, ponieważ samozapłodnienie eliminuje alleleletalne i dlatego u roślin w trawie utrzymującym się samozapłodnieniem nie obserwuje się depresji wsobnej. Z drugiej strony, jak wspomniano powyżej, koszty geitonogamii wpływające na sukces reprodukcyjny płci mę
skiej bardziej ujawniają się u roślin samonieżydnych. Dwupienność mogła więc wyewoluować także w warunkach samonieżydności [17, 18, 20].

Koszty geitonogamii powinny stanowić podstawię do selekcji takich cech, które redukowałyby możliwość jej natężenia [12, 18]. Występowanie tego typu cech zostało potwierdzone szczególnie w przypadku biotycznego typu zapylania, zarówno u zapylaczy, jak i u zapylanych przez nie roślin [21, 22, 47, 49]. Na przykład u samozgrodnych *Digitalis purpurea* L. i *Delphinium nelsonii* Greene nektar wydzielany w kwiatach znajdujących się u podstawy kwiato stanu ma większą wartość kaloryczną niż w kwiatach w górnej jego części. Pszczoły zazwyczaj rozpoznają zbieranie nektaru od kwiatów położonych najniżej i potem przemieszczają się do górnych patri kwiato stanu. Oba wyżej wymienione gatunki są protoandryczne; niższe położone kwiaty są starsze i w przeważającym stopniu w fazie żeńskiej, podczas gdy kwiaty w górnej części kwiato stanu są w fazie męskiej. Tak więc rośliny te minimalizują geitonogamie poprzez zwiększenie ilości obcego pyłku pozostawianego przez pszczoły na kwiatach w fazie żeńskiej i zwiększenie ilości eksportowanego pyłku z kwiatów w fazie męskiej [18].

U niektórych roślin geitonogamia stanowi jednakże podstawowy system zapylenia, np. u gatunków z rodzaju *Callitriche* L. [39]. W rodzaju tym w procesie ewolucji powstał unikalny wśród Angiospermae system zapylania - geitonogamia wewnętrzna, po raz pierwszy opisana w roku 1984 przez Philbricka [37].

Przedstawiciele rodzaju *Callitriche* charakteryzują się uproszczoną budową kwiatów męskich i żeńskich. Pylek kielkuje tutaj w zamkniętym pyniku, a łagiewka płykowa rośnie najpierw w obrębie nitki pręcika, następnie poprzez tkanki wegetatywne łodygi kieruje się do kwiatu żeńskiego wnikając do zalążni w jej części nasadowej. Trudno przecenić znaczenie odkrycia geitonogamii wewnętrznej, ponieważ ekologia zapylania jest oddzielną gałęzią nauki już od ponad 200 lat i nikt nie przypuszczał, że uda się odkryć całkowicie nowy sposób wniknięcia łagiewki płykowej do zalążni.

W odróżnieniu od geitonogamii wewnętrznej, inne typy zapylania sąsiedzkich, które określone są także jako geitonogamia typowa [41], można nazwać geitonogamą zewnętrzną.

Rodzaj *Callitriche* jest bardzo interesującym rodzajem nie tylko ze względu na występowanie unikalnego systemu zapylania, ale również dlatego, że jest jednym z nielicznych rodzajów, u których u jednego gatunku występuje równocześnie zaplenie w środowisku powietrznym i wodnym [35]. Callitrichaceae są szeroko rozprzestrzenioną, niemal kosmopolityczną rodziną, z centrum różnorodności w strefie zwrotnikowej i podzwrotnikowej [24]. Jest to monotypowa rodzina z jednym rodzajem - *Callitriche* (rzeź), w którym wyróżnia się ponad 50 gatunków [35, 43]. Rzędy są roślinami rocznymi lub wieleletnimi [2, 59]. W rodzaju tym występują gatunki lądowe, amfibiotyczne i wodne. Gatunki lądowe rosną na okresowo zalewanych i błotnistych terenach, które stopniowo wysychają. Te formy mają płóciacte się pędy, które tworzą kępy o średnicy 2-7 cm. Gatunki amfibiotyczne mogą rosnąć zarówno na lądzie, jak i w wodzie. Jedne ich formy występują na wilgotnych, błotnistych stanowiskach, a inne są całkowicie zanurzone w wodzie lub też ich pędy osiągają powierzchnię wody, na której wykształcają się rozetki liściowe. Wśród gatunków typowo wodnych występują tylko rośliny całkowicie zanurzone, które tworzą kępy z rozgałęzionych pędów [41].

Przedstawiciele rodzaju *Callitriche* mają kwiaty jednopłciowe, podobnie jak większość okrytonasiennych z udokumentowaną epi- i hypohydrogamią [11, 28, 40]. Wszystkie gatuniki, z wyjątkiem dwupiennej *C. petriei* Mason, są jednopłciowe, z męskimi i żeńskimi kwiatami występującymi w różnych kombinacjach w kątach liści. Liczba kwiatów każdego typu na pędzie różni się u danego osobnika i pomiędzy osobnikami danego gatunku. Kwiaty rzęśli mają bardzo uproszczoną budowę. Nie posiadają one okwiata, lecz u niektórych gatunków są otoczone przez delikatne, stosunkowo duże, biały podkwiatki [36]. Kwiat męski stanowi pojedynczy pręcik, który ma dwa pnylniki umieszczony na długiej nitce pręcikowej. Kwiat żeński składa
się ze słupka powstałego ze zrośnięcia dwóch owocolistków. W czterokomorowej załajni rozwijają się cztery załajki, a na jej szczycie wyrastają dwie nitkowate szyjki zakończone wydłużonym znamieniem [13, 23, 30, 33, 37, 50, 56, 59, 60].

U większości gatunków rzęśli rośliny są częściowo protogyniczne (przedsłupne); w warun-
<table>
<thead>
<tr>
<th>Badane gatunki Callitriche Studied species of Callitriche</th>
<th>Typ kwiatów Type of flowers</th>
<th>Łagiewka pylkowa wnika do zalążni: Pollen tube entering the ovary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. heterophylla</td>
<td>w pełni rozwinięte fully developed</td>
<td>przez szyjkę słupka via the style 58%</td>
</tr>
<tr>
<td></td>
<td>zredukowane underdeveloped</td>
<td>0%</td>
</tr>
<tr>
<td>C. verna</td>
<td>w pełni rozwinięte fully developed</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>zredukowane underdeveloped</td>
<td>0%</td>
</tr>
</tbody>
</table>

obserwowała zredukowane pręciki u C. verna L. i opisywała je jako pręciki z obumarłymi lub niedorozwiniętymi pyłnikami. W owym czasie przypuszczano, że nasiona powstałe u form lądowych i podwodnych C. verna powstają na drodze rozmnazania apomiktycznego – aposporii [51, 52, 55].

Geitonogamia wewnętrzna występuje przede wszystkim w kwiatach zredukowanych, gdzie stanowi ona 100% efektywnego systemu zaplenienia. Stwierdzono jednak, że łagiewki pylkowe kielkujące z ziaren pylku w zredukowanych pręcikach wnikają również do zalążków kwiatów żeńskich w pełni rozwiniętych. Do wspomnianych kwiatów łagiewki mogą wnikać w następujący sposób: tylko przez szyjkę słupka (z ziarn pylku kielkujących na znamieniu – geitonogamia wewnętrzna), tylko przez podstawę zalążni (z ziarn pylku kielkujących w zredukowanych nieotwierających się pyłnikach – geitonogamia wewnętrzna), lub też równocześnie przez szyjkę słupka i podstawę zalążni. U C. verna kwiaty w pełni rozwinięte są zapłodniane w następstwie geitonogamii wewnętrznej aż w 85% (Tab. 1) [37].

W geitonogamii wewnętrznej, która stwierdzona została już u 7 gatunków, co stanowi około 15% przedstawicieli rodzaju Callitriche (C. heterophylla Pursh, C. heteropoda Engelm., C. lechleri (Hegelm.) Fassett, C. nubigena Fassett, C. rimosas Fassett, C. trochlearis Fassett, C. ver-
klejstogamicznych trzech rodzajów z rodziny Malpighiaceae (Janussia A. Juss., Gaudichaudia H.B. & K. i Camarea St. Hil.). W kwiatach tych roślin ziarna pyłku kielżą w zamkniętym pylniku i wiele z łagiewek pyłkowych wrasta do nitki pręcika, przeraża dno kwiatowe i napotykając bariere w postaci komórki o zdrewniałych ścianach [42], nie wyrasza poza obręb kwiatu lecz wnika do słupka od jego podstawy. W odróżnieniu od jednoplicowych kwiatów Callitriche, kwiaty Janussia, Gaudichaudia i Camarea są obupłciowe i omówiony powyżej system zapylania możemy określić jako klejstogamie wewnętrzną, analogicznie do geitonomii wewnętrznej u Callitriche. W obu przypadkach łagiewki pyłkowe rosną przez wegetatywną tkankę rośliny, nie przerażają tkanki okrywających pylnika, a więc nie mają kontaktu ze środowiskiem zewnętrznym i nie wrastają do załąźni od jej podstawy. Natomiast w klejstogamicznych kwiatach Viola riviniana Rchb., łagiewki przerażające ścianę pylnika dostają się na znaną słupka [34].

wiska *C. lechleri* rozciągają się od centralnego Chile i zachodniej Argentyny aż do Urugwaju, a występowanie *C. rimosas* jest udokumentowane we wschodniej Argentynie, Urugwaju i południowej Brazylii [3]. Natomiast *Callitricle heterophylla* jest rozprzestrzeniona w USA i Meksyku. Do najbardziej rozpowszechnionych gatunków rzęśli należy *C. verna*, która występuje powszechnie w Ameryce Północnej, Europie i Azji [61]. Geitonogamia wewnętrzna nie została dotychczas stwierdzona u gatunków, których zasięg występowania ogranicza się do Europy i Azji, jednakże tylko 15 z ok. 25 gatunków tam występujących zostało przebadanych pod względem typu zapylenia [42]. Być może zróżnicowanie wielkości zasięgów gatunków rzęśli z geitonogamią wewnętrzną związane jest z ich różnym wiekiem filogenetycznym. Gatunki starsze miały już szansę zająć większe zasięgi geograficzne. Natomiast takie gatunki jak *C. trochlearis*, *C. heteropoda* i *C. nubigena* wyróżnicowały się później i nie zdołały się jeszcze rozprzestrzenieć. Hipoteza ta wymaga dalszych badań.

Istnieje pewien związek pomiędzy występowaniem geitonogamii wewnętrznej a rozmieszczeniem gatunków na różnej wysokości nad poziomem morza. Populacje rzęśli występujące powyżej 3 000 m n.p.m. stanowią w większości gatunki posiadamające zdolność do geitonogamii wewnętrznej. Na przykład *C. verna* w Ameryce Północnej pojawia się na wysokościach wyższych niż pozostałe gatunki tego rodzaju (powyżej 3 500 m n.p.m.). W Ameryce Półd. *C. heteropoda* i *C. nubigena* występują jedynie na dużychroności (powyżej 3000 m n.p.m.). Jednakże *C. heterophylla*, *C. trochlearis* i *C. lechleri*, u których również stwierdzono geitonogamie wewnętrzną, zajmują stanowiska do 3 000 m wysokości n.p.m., a *C. rimosas* nie występuje powyżej 2 000 m n.p.m. Z kolei *C. albotamarginata* Fassett oraz *C. quindiuensis* Fassett, u których nie występuje geitonogamia wewnętrzna, są również gatunkami wysokogórskimi występującymi powyżej 3 000 m n.p.m. (Tab. 2). Gatunki z geitonogamią wewnętrzną wykazują więc tendencję do występowania w wyższych położeniach górskich, lecz ten typ zapylenia nie jest warunkiem koniecznym do kolonizowania wysokogórskich stanowisk. Badania dotyczące wydajności zapylenia u roślin lądowych ujawniały znaczące ewolucyjne zmiany w systemach zapylenia na stanowiskach wysokogórskich [6]. W rzęsie wydajność zapylenia, która jest przypuszczalnie podwyższana przez geitonogamę wewnętrzną, nie wydaje się być czynnikiem ograniczającym występowanie populacji na dużych wysokościach nad poziomem morza [42].

Dotychczas nie udało się stwierdzić ścisłej korelacji między stopniem ploidolidności a występowaniem geitonogamii wewnętrznej. Liczby chromosomów przebadanych gatunków rzęśli wykazują, że północnoamerykańskie gatunki, u których stwierdzono geitonogamie wewnętrzne, są poliploidami o podstawowej liczbie chromosomów *x* = 5: *C. heterophylla* i *C. verna* - 2n = 20, *C. trochlearis* - 2n = 40. Jednakże nie u wszystkich poliploidów wykazano istnienie tego systemu zapylenia, np. amfibiotyczna *C. marginata* oraz lądowa *C. nuttallii* to tetraploidy (2n = 20), a lądowa *C. antarctica* Engelm. jest oktoploidem (2n = 40) i u żadnego z wymieniających gatunków nie stwierdzono geitonogamii wewnętrznej. Południowoamerykańskie gatunki, u których występuje geitonogamia wewnętrzna, nie są przebadane pod względem kario logicznym [42].

Geitonogamia wewnętrzna została stwierdzona u siedmiu z ok. 50 gatunków *Callitricle*. Ten unikalny system powstawał tylko w obrębie rodziny *Callitrichiaceae* [37]. Philbrick i Jansen [43] skupiając swoją uwagę na gatunkach północnoamerykańskich, wysunęli pierwszą hipotezę filogenetyczną dotyczącą tej rodziny. Ich analizy ujawniły, że geitonogamia wewnętrzna wyewolowała tylko jeden raz, a *C. heterophylla*, *C. trochlearis*, *C. verna* stanowiły monofilety-
Tabela 2. Geitonogamia wewnętrzna u wybranych gatunków *Callitriches* (wg [42], zmodyfikowane).

Table 2. Internal geitonogamy in the selected *Callitriches* species (after [42], modified).

<table>
<thead>
<tr>
<th>Gatunek Species</th>
<th>Występowanie geitonogamii wewnętrznej</th>
<th>Środowisko życia Habitat</th>
<th>Wysokość n.p.m. Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albomarginata Fassett</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. antarctica Engelm.</td>
<td>–</td>
<td>lądowe (terrestrial)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>*C. deflexa A. Braun</td>
<td>–</td>
<td>lądowe (terrestrial)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. hermaphroditica L.</td>
<td>–</td>
<td>wodne (aquatic)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. heterophylla Pursh.</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. heteropoda Engelm.</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. lechleri (Hegelm.) Fassett</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. marginata Torrey</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. nubigena Fassett</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td>>3 000 m</td>
</tr>
<tr>
<td>C. nutallii Torrey</td>
<td>–</td>
<td>lądowe (terrestrial)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. oblongicarpa Fassett</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. occidentalis Hegelm.</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. peploides Nutt.</td>
<td>–</td>
<td>lądowe (terrestrial)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. quindensis Fassett</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td>>3 000 m</td>
</tr>
<tr>
<td>C. rimosae Fassett</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. stagnalis Scop.</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. terrestris Raf.</td>
<td>–</td>
<td>lądowe (terrestrial)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. trochlearis Fassett</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. truncata Guss.</td>
<td>–</td>
<td>wodne (aquatic)</td>
<td><2 000 m</td>
</tr>
<tr>
<td>C. turcosa Bert.</td>
<td>–</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m</td>
</tr>
<tr>
<td>C. verna L.</td>
<td>+</td>
<td>amfibiotyczne (amphibious)</td>
<td><3 000 m i powyżej (and over)</td>
</tr>
</tbody>
</table>

Obok typowej dla rześli geitonogamii u większości gatunków występuje możliwość zapylenia krzyżowego – ksenogamii [32, 38, 44, 57], mamy wtedy do czynienia z geitonogamią fauktatyczną. Do zapylenia krzyżowego może dojść u gatunków, u których ziarna pyłku wysypują się z pylników i pod wpływem siły ciężkości lub przy udziale wiatru (anemogamia), wody (epihydrogami), czy też owadów (entomogamia) przenoszone są na znamiona słupków [2, 9, 10, 15]. Ziarna pyłku kielkują następnie na zna-
<table>
<thead>
<tr>
<th>Zapylenie</th>
<th>Przeniesienie pyłku na znamię słupka</th>
<th>Forma życiowa osobnika</th>
<th>Badane gatunki Callitrice Studied Callitrice species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollination</td>
<td>Pollen grains transfer on the stigma</td>
<td>Plant life forms</td>
<td></td>
</tr>
<tr>
<td>due to gravitation and wind (anemogamy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>due to gravitation and wind (anemogamy) or on the water surface (epihydogamy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pod wodą (hypohydogamia)</td>
<td>formy całkowicie zanurzone submersed forms</td>
<td>gatunki wodne (aquatic species): prawdopodobnie C. hebraphroditica L.</td>
<td></td>
</tr>
<tr>
<td>under the water surface (hypohydogamy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pod wodą, w obrębie komory utworzonej przez młode liście (hypohydogamia)</td>
<td>formy całkowicie zanurzone submersed forms</td>
<td>gatunki wodne (aquatic species): C. lusitanica Schotsm.</td>
<td></td>
</tr>
<tr>
<td>under the water surface, inside the young leaves chamber (hypohydogamy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brak bezpośredniego kontaktu znamienia słupka z otwartym pyłnikiem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lack of direct contact of stigma and anther</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitki pręcików wyginają się, a częściowo otwarte pyłniki dotykają znamion słupków, łagiewki pyłkowe wrastają do znamion słupków stamen filaments bend, and partially open anthers tough stigmas, pollen tubes grow into stigmas</td>
<td>formy lądowe terrestrial forms</td>
<td>gatunki lądowe (terrestrial species): C. nuttallii Torrey, C. peploides Nutt., C. terestris Raf.</td>
<td></td>
</tr>
<tr>
<td>kärtel styles bend, and tough partially open anthers, and pollen tubes grow into stigmas</td>
<td></td>
<td>gatunki amfibiotyczne (amphibious species): C. regis-jubae Schotsm.</td>
<td></td>
</tr>
<tr>
<td>szyjki słupków wyginają się i dotykają częściowo otwartych pyłników, a łagiewki pyłkowe wrastają do znamion słupków</td>
<td>formy wodne z pływającymi rozetami liściowymi aquatic forms with floating rosettes of leaves</td>
<td>gatunki amfibiotyczne (amphibious species): C. regis-jubae Schotsm., C. heterophylla Pursh, C. lunisulca Clav.</td>
<td></td>
</tr>
<tr>
<td>lack of pollen transfer on the stigma, pollen grains germinating inside the anther</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brak prezmeszenia pyłku na znamię słupka, ziarna pyłku niekierowane w obrębę pyłnika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lack of pollen transfer on the stigma, pollen tubes grow inside the anther</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gatunki wodne (aquatic species): C. lusitanica Schotsm., C. lunisulca Clav.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mionach słupków, a łagiewki pyłkowe przez szyjkę słupka wrastają do załazni. Występowanie typowej hypohydromagii nie została w tym rodzaju w pełni udokumentowana, jednak analizy z użyciem RAPD (random amplified polymorphic DNA) wskazują, że u podwodnej C. hermaphroditica zachodzi zapylenie krzyżowe [38], a występująca redukcja egzyny ziarn pylką u tego gatunku jest cechą charakterystyczną dla roślin z hypohydromagią [45]. Zapylenie u gatunków Callitrichce, które nie wymaga bezpośredniego kontaktu znamienia słupka z otwartym pylnikiem, Schotsman [57] określa jako typ bezkontaktowy (ang.: non-contacters). U niektórych gatunków rzęśli (zarówno wodnych jak i lądowych) zapylenie następuje poprzez bezpośrednie zetknienie się znamienia słupka z częściowo otwartym pylnikiem [54, 57, 58]. Ten typ zapylenia Schotsman [57] określa jako typ kontaktowy (ang.: contacters). W tym przypadku ziarna pylkę kielżą we wnętrz pylnika, tuż po jego otworze. W zależności od gatunku rzęśli, albo pręcik wygina się w kierunku słupka, albo szyjk słupka wygina się w kierunku pręcika (Tab. 3). W obu przypadkach dochodzi do zetknienia się znamienia słupka z częściowo otwartym pylnikiem. Ziarna pylkę nie są prze noszone na znamię słupka, lecz łagiewki pyłkowe tworząc tzw. „połączenia szczoteczkowe” (ang. brush; Ryc. 5) [57] wrastają do znamienia, które zetknęło się z pylnikiem. Następnie przez szyjkę słupka wnika do załazni i do załazków. Przy tym sposobie zapylenia oraz przy geitonogamii wewnętrznej mówimy o geitonogamii obligatoryjnej, gdyż w obu tych przypadkach istnieje bardzo małe prawdopodobieństwo zapylenia krzyżowego.

Charakterystyczną cechą rodzaju Callitrichce jest występowanie różnych typów zapylenia w obrębie gatunku (Tab. 3). Jest to przystosowanie do różnych środowisk życia, które równocześnie umożliwia zapylenie krzyżowe nawet u roślin z geitonogamią wewnętrzną, co zapobiega powstaniu linii wsobnych.

Literatura

[34] MCLEAN R. C., IVIMAY-COOK W. R. 1968. Textbook of Theoretical Botany, wyd. 4, Bristol, Western Printing Services Ltd.

