WPŁYW OGNIA NA ROŚLINNOŚĆ SAWANNY AFRYKAŃSKIEJ

Fire impact on the vegetation of the African savanna

Anna MEDWECKA-KORNAŚ

Summary. The author had an opportunity to study the pyrophytic vegetation in Zambia, in 1972/73, and in northern Nigeria, in 1977/78. Special attention was paid to the life forms of particular species and to the phytosociological and phenological features of two plots in the open savanna near Lusaka. The studied pyrophytes represented four groups of the Raunkiaer's classification: phanerophytes, hemicryptophytes, geophytes (mainly with shallowly located underground organs) and therophytes. A part of herbaceous plants had woody underground organs typical of „geoxylic suffrutesces”. On the savanna plots near Lusaka hemicryptophytes prevailed. The following phenological phases were distinguished there: the first phase of early regeneration after inflagration, the second phase of domination of tall grasses in the rainy season and the third phase of the yellowing of the grasses in the dry season.

Key words: grassy savanna, Zambia, pyrophytes, Raunkiaer's classification, phenology

Prof. dr Anna Medwecka-Kornaś, Instytut Botaniki, Uniwersytet Jagielloński, ul. Lubicz 46, 31-512 Kraków
WSTĘP

W czasie pobytu w Afryce w latach 1972/73 (Lusaka, Zambia) i 1977/78 (Maiduguri, północna Nigeria) autorka prowadziła obserwacje dotyczące pirofitów (roślin zdolnych do przeżywania pożarów). Część zebranych materiałów była już przedmiotem publikacji [1, 2], część opracowywana jest obecnie. Pirofty przyciągały od dawna uwagę badaczy, tak że względnie na cechy ekologiczne i przebieg ich ewolucji, jak ze względu na piękno, są bogate w badania. Pirofty przyczyniają się do utrzymania populacji piwonia, które są jednymi z najbardziej egzotycznych roślin z rodzaju Uapaca (Uapacaeeae) w klasyfikacji biogeograficznej. Przyszłe badania związane z piwonią mogą w przyszłości dostarczyć wiedzy o roli piwonia w ekosystemach Afryki.

ZAKRES I CEL BADAŃ

Badania własne, przeprowadzone w Afryce, obejmowały:

1. Zdjęcia fitosocjologiczne powtarzane kilka-krotnie w ciągu roku na dwóch wypalonych poletkach, położonych w obrębie trawiastej savanny blisko Lusaki, w Zambia.

2. Obserwacje poszczególnych gatunków na poletkach i pozostających, dotyczące morfologii roślin m.in. części podziemnych i umieszczenia pączków odnawiających.

Głównymi celami badań dotyczących pirofitów było wyróżnienie ich typów ekologicznych w oparciu o koncepcję Raunkiaera (1905), sporządzanie specyfikacji form życiowych dla badanej savanny i przesładowanie faz fenologicznych w jej rozwoju po pożarze.

KLASYFIKACJA EKOLÓGICZNA PIROFITÓW

PIROFTY, REPREzentowane mogą wszystkie typy biologiczne (formy życiowe) wyróżniane w kla-

Terofty – rośliny jednoroczne, które przeżywają pożar tylko w postaci nasion, były na bada-nych poletkach nieliczne. W innych regionach i formacjach pirofitów, np. w śródziemnomorskim „garrigue”, mogą one odgrywać znacznie większą rolę.

Geoxycyl suffrutices czyli rośliny zielne (względnie na wpół zielne) ze zdrowialnymi częściami podziemnymi, z których wyrastają po pożarze pędy nadziemne, są grupą, której odróżnienie nakłada się na klasyfikację Raunkiera i nie zawsze jest jednoznaczne. Zależnie od umieszczenia pańszczek odnawiających mogą być one chamefitami, hemikryptotifitami względnie geo-
miatami. Do roślin tej grupy z pańszczkami odnawia-
jącymi na powierzchni ziemi należą np.: maleńki *Hibiscus rhodanthus* Gürke apud Schinz (Malvaceae) i *Gardenia subcanauls* Stapf & Hutch. (Rubiaceae – [1]), mające organy pod-
dziemne słabo zgrubiałe, *Lannea edulis* (Sond.) Engl. (Anacardiaceae), *Combretum platypetalum* Welw. ex Laws. (Combretaceae) i *Cryptose-
opalum maraviense* Oliv. (Leguminosae) o bar-
dziej rozbudowanych częściach podziemnych. U *Cryptosepalum* mają one postać podziemnego pnia, na którego rozgałęzieniach wyrastają pedy nadziemne (Ryc. 1).

Klasyfikacja Raunkiera była już niejednokrotnie stosowana w odniesieniu do pirofitów, choć sprawia to niejake trudności i nie wszy-
stkie ich cechy mogą być tą drogą odzwierciedlone. Możliwość przeżywania pożarów wiąże się także np. z odpornością owoców i nasion na spalenie, sposobem kielkowania nasion, szybkością wzrostu młodych roślin i z rytmiką rozwo-
dową poszczególnych gatunków.

UDZIAŁ TYPÓW BIOLOGICZNYCH ROŚLIN NA POLETKACH OBSERWACYJNYCH W SAWannie KOŁO LUSAKI

Edulis (Sond.) Engl. (Anacardiaceae), Tricho-
desma hockii De Wild (Boraginaceae) i Trium-
fetra heliocarpa K. Schum. (Tiliaceae).

Ogólna liczba gatunków na każdym z polea-
tek przekraczała 60. W ich skład wchodziło od-
powiednio po 5 i 8 gatunków drzew i krzewów,
12 i 13 gatunków traw. Wśród roślin zielnych
przeważały hemikryptofity (na każdym z polea-
tek ponad 30 gatunków). Rośliny wyraźnie geo-
syliczne miały po blisko 10 gatunków, geofty
uplasowały się na przedostatnim, a terofity na
ostatnim miejscu. Siewek, praktycznie biorąc, nie
obserwowano.

FAZY FENOLOGICZNE WYPALANEJ SAWANNY

Jednym z podsumowań obserwacji na poletkach
pod Lusaką może być wyróżnienie trzech główny-
nych faz fenologicznych w rozwoju roślinności.
Są to:

1. Wczesne stadium rozwoju trwające 1–2
miesiące po pożarze. Przypadało na drugą połowę
okresu suszy, na sierpień i wrzesień. Naga gleba,
miastami pokryta popiołem, była widoczna w
śród kęp niskich traw, częściowo spalonych
ale szybko wypuszczałcych nowe liście. Około
półowego gatunków nie będących trawami kwitła;
kwiaty rozwijały się przed liściami lub równo-
cześnie z nimi. Niekotóre rośliny miały już za-
wiązywające się lub nawet dojrzałe owoce, ale naj-
większe nasilenie owocowania przypadało nieco
później, tuż przed deszczami lub na początku
deszczy, w październiku i listopadzie.

2. Stadium pełnego rozwoju traw, w środku
sezony deszczowego, w styczniu i w lutym. Gleba
w tym okresie była całkowicie pokryta przez
żoną roślinność, dominowały kwitnące i owocu-
jące trawy. Wiele roślin dwuliściennych, bardzo
niskich w czasie kwitnienia, miało teraz w pełni
rozwinięte organy asymilujące i znaczne roz-
miary (np. liście u Lannea edulis dochodziły do
długości 40 cm).

3. Stadium stopniowego wysychania roślin-
ności po okresie deszczów, od kwietnia do nasz-
tego pożaru (tj. do lipca lub sierpnia). Na
początku tego okresu trawy zółkły i stały się
twarde, większość innych roślin straciła liście
lub łodygi. Tylko nieliczne rośliny pozostały
zielone i kwitły do następnego pożaru. Powierz-
chnia gleby była całkowicie zacieniona przez
gęste, obumarłe pędy traw.

Wiele faktów wskazuje, że na badanej sa-
wannie ogień hamuje sukcesję, a za potencjalną
rolność naturalną tego terenu można uznać las sawannowy, zrzucający całkowicie lub czę-
ściowo liście w porze suchej.

LITERATURA

Stapf. & Hutch., a pyrophytic suffrutex of the African
stant sedges (Cyperaceae) in Zambia. Flora 176: 61–
71.

Instytucje współorganizujące badania:
University of Maiduguri, Maiduguri, Nigeria;
University of Zambia, Lusaka, Zambia;
Uniwersytet Jagielloński, Kraków