OBSERWACJE FENOLOGICZNE WYBRANYCH GATUNKÓW ARBORETUM W GLINNEJ

Phenological observations of selected species in the Arboretum in Glinna

Ewa MULAR, Marian CIAECIURA, Jerzy TUMIŁOWICZ

Uniwersytet Szczeciński, Wydział Nauk Przyrodniczych
Katedra Taksonomii Roślin i Fitogeografii, ul. Wąska 13, 71-415 Szczecin
e-mail: mciaciura@interia.pl

STRESZCZENIE

WSTĘP

Ogród Dendrologiczny w Glinnej znajduje się na skraju Puszczy Bukowej w Nadleśnictwie Gryfino. Choć niewielki, bo niespełna 6-hektarowy, jest jednym z najciekawszych w Polsce.

W niniejszej pracy przedstawione zostały spektra i zestawienie tabelaryczne faz roztajowych gatunków o najbardziej zróżnicowanych pojawach fenologicznych.

METODYKA PRACY

Obserwacje dokonywane były w odstępach dwutygodniowych, natomiast w porze wiosennej przeprowadzane były co tydzień, gdyż wówczas częstość obserwacji osiągała najwyższą wartość. Najmniej zmiany zaobserwowano latem.

Dane obserwacyjne zestawiono w tabeli, która stanowi podstawę do wykonania diagramów roztajowych dla badanych egzemplarzy.

Po przeanalizowaniu licznych sposobów wykreślania diagramów fenologicznych wybrano spektrum fenologiczne zaproponowane przez Szenikowa (1932), a następnie nieco zmodyfikowane przez Łukasiewi-
Mapa 1. Plan Ogrodu (podział na kwatery oraz wskazanie położenia badanych gatunków) (wg Tumiłowicza)
Map. 1. The plan of garden by Tumiłowicz.

WNOSIKI

Na podstawie spektrów fenologicznych (ryc. 1) oraz dokonując analizy przeprowadzonych obserwacji (tab. 2) można wysunąć następujące wnioski:

- Specyficzny mikroklimat panujący na terenie Ogrodu Dendrologicznego w Glinnej bardzo sprzyja wielu wrażliwym na sezonowe zmiany klimatyczne gatunkom.
- Na pojawienie się i długość trwania poszczególnych faz fenologicznych, poza właściwościami biologicznymi, ma wpływ przebieg pogody (nasłonecznienie, opady, temperatura), zdrowotność roślin oraz stopień nasilenia niekorzystnych warunków.
- W okresie przeprowadzanych badań nie zauważono zbyt drastycznych różnic pogodowych, mających znaczący i negatywny wpływ na rozwój większości roślin w Ogrodzie Dendrologicznym, jednakże u nielicznych gatunków zaobserwowano nieznaczne przesunięcia początków faz fenologicznych (w szczególności fazy kwitnienia i listnienia).
- Rozwoj większości badanych gatunków wykazuje zasynchronizowanie swej rytmiky sezonowej z fenologicznymi porami roku występującymi na terenie Ogrodu. Kształtuje się ona niezależnie od przebiegu temperatur i opadów.
- Wśród badanych gatunków najwcześniejszym rozwojem organów generatywnych charakteryzują się: Hamamelis mollis Oliv., Hamamelis virginiana L., oraz Chimonanthus praecox Link. Rozpoczynają one kwitnienie już w lutym, bądź w pierwszej połowie marca.
- Najpóźniej, bo dopiero w sierpniu, podczas trwającego na naszym terenie późnego lata - wczesnej jesieni: pory roku charakteryzującej się głównie dojrzewaniem owoców, pąki kwiatowe rozwijają Frankinia alatamaha I. i Heptacodium miconioides Rehd.
- Spośród badanych okazów dwa taksowy nie wykażały kwitnienia i owocowania: Nothofagus antarctica Oerst. i Acer campbellii Hook. U tego ostatniego zapewne spowodowane jest to niedojrzałością płciową.
- Poddane obserwacjom dwa gatunki ostrokrzewów wykazały ostaniecie w kwitnieniu, co ma konsekwencje w wyraźnie zubożającej faze owocowania, wynikającej przypuszczalnie z pogarszających się warunków głębowych, na których zimy gatunek ten jest bardzo wrażliwy.

SUMMARY

The phonological observations in the Dendrological Garden in Glinna have been continued for two years (2004 and 2005). The research subject was 33 species of plants of foreign origin with different phonological period. During whole year the observations were executed every two weeks except spring (which were continued every week). The smallest change were noted in summer.

We observed 24 phase of development both the organ vegetative and generative. The methods were based on the Szenikow (1932) and Lukasiewicz (1999).

Our observations confirm the positive influence of maritime microclimate for naturalization of selected species. The development of most plants synchronizes their seasonal rhythm with the phonological seasons occurring in the garden. Three species: Hamamelis mollis, Hamamelis virginiana and Chimonanthus praecox beginning to bloom in February or in the first half of March. Contrary to them the Frankinia alata-maha and Heptacodium miconioides start to bloom in August. Two species: Nothofagus antarctica and Acer campbellii did not bloom and fructify during all seasons. Two species of holly produced smaller number of flowers and fruit. It was probably caused by of soil conditions.

LITERATURA

Tabela 1. Wykaz badanych gatunków.

Table 1. The list of described taxa.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Gatunek (numer inw.)</th>
<th>Rok wysadzenia</th>
<th>Pochodzenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abelia mosanensis Nakai (12638)</td>
<td>1993</td>
<td>Pyong-Yang (Pchn. Korea)</td>
</tr>
<tr>
<td>2</td>
<td>Acer campbellii Hook. (10772)</td>
<td>1995</td>
<td>Samoens F (przes. z Rogowa)</td>
</tr>
<tr>
<td>3</td>
<td>Acer griseum Pax (8724)</td>
<td>1981</td>
<td>Esperance (USA)</td>
</tr>
<tr>
<td>4</td>
<td>Acer insulare Makino (9422)</td>
<td>1981</td>
<td>Tokyo (Japonia)</td>
</tr>
<tr>
<td>5</td>
<td>Acer macrophyllum Pursh (7938)</td>
<td>1972</td>
<td>Westonbirt (Wielka Brytania)</td>
</tr>
<tr>
<td>6</td>
<td>Berberis buxifolia Lam. (12210)</td>
<td>1993</td>
<td>Store Milde (Norwegia)</td>
</tr>
<tr>
<td>7</td>
<td>Calycanthus fertilis Walt. (9181)</td>
<td>1981</td>
<td>Nogent s. V.F</td>
</tr>
<tr>
<td>8</td>
<td>Cercis siliquastrum L. (8553)</td>
<td>1972</td>
<td>Stefanesti (Rumunia)</td>
</tr>
<tr>
<td>9</td>
<td>Chimonanthus praecox Link. (9882)</td>
<td>1981</td>
<td>Beijing (Chiny)</td>
</tr>
<tr>
<td>10</td>
<td>Clerodendron trichotomum Thumb. (9438)</td>
<td>1993</td>
<td>Koshigaya (Japonia)</td>
</tr>
<tr>
<td>11</td>
<td>Cornus nuttallii Audub. (13527)</td>
<td>1995</td>
<td>Zurych (Szwajcaria)</td>
</tr>
<tr>
<td>12</td>
<td>Corylopsis platypetala Rehd. et Wils. (7857)</td>
<td>1972</td>
<td>Kobenharn (Dania)</td>
</tr>
<tr>
<td>14</td>
<td>Dipteronia sinensis Oliv. (10804)</td>
<td>1984</td>
<td>Zurich (Szwajcaria)</td>
</tr>
<tr>
<td>15</td>
<td>Franklinia alatamaha Marsh. (11390)</td>
<td>1988</td>
<td>Arnold Arb. (USA)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----</td>
<td>------------------------</td>
</tr>
<tr>
<td>16</td>
<td>Hamamelis mollis Oliv. (9641)</td>
<td>1981</td>
<td>Lushan (Chiny)</td>
</tr>
<tr>
<td>17</td>
<td>Hamamelis virginiana L. (11721)</td>
<td>1993</td>
<td>Toronto (Canada)</td>
</tr>
<tr>
<td>18</td>
<td>Ilex aquifolium L. (10047)</td>
<td>1981</td>
<td>Mlynany (Słowacja)</td>
</tr>
<tr>
<td>19</td>
<td>Ilex ciliospinosa Loes. (10054)</td>
<td>1981</td>
<td>Mlynany (Słowacja)</td>
</tr>
<tr>
<td>20</td>
<td>Heptacodium miconioides Rehd. (14128)</td>
<td>1996</td>
<td>Arnold Arb. (USA)</td>
</tr>
<tr>
<td>21</td>
<td>Magnolia cylindrica Wils. (10634)</td>
<td>1987</td>
<td>Shanghai (Chiny)</td>
</tr>
<tr>
<td>22</td>
<td>Magnolia officinalis Rehd. et Wils. var. biloba (10637)</td>
<td>1985</td>
<td>Chiny</td>
</tr>
<tr>
<td>23</td>
<td>Magnolia wilsonii Hook. (7615)</td>
<td>1972</td>
<td>Mlynany (Słowacja)</td>
</tr>
<tr>
<td>24</td>
<td>Nothofagus antarctica Oerst. (13993)</td>
<td>1995</td>
<td>f-ma Kryt (Warszawa)</td>
</tr>
<tr>
<td>25</td>
<td>Pseudocydonia sinensis Schn. (13570)</td>
<td>1994</td>
<td>Beijing (Chiny)</td>
</tr>
<tr>
<td>26</td>
<td>Pterocarya palliurus Batal. (12758)</td>
<td>1995</td>
<td>Chiny</td>
</tr>
<tr>
<td>27</td>
<td>Pterostyrax carymbosa Sieb. et Zucc. (7994)</td>
<td>1972</td>
<td>Batumi (Gruzja)</td>
</tr>
<tr>
<td>28</td>
<td>Sinocalycanthus chinensis Cheng et S.Y.Hu (12993)</td>
<td>1994</td>
<td>Chiny</td>
</tr>
<tr>
<td>29</td>
<td>Sinowilsonia henryi Hemsl. (12738)</td>
<td>1993</td>
<td>Koln (Niemcy)</td>
</tr>
<tr>
<td>30</td>
<td>Stewartia pseudocamellia Max. (10409)</td>
<td>1983</td>
<td>Koshigaya (Japonia)</td>
</tr>
<tr>
<td>31</td>
<td>Stewartia serrata Max. (11601)</td>
<td>1988</td>
<td>Ofuna (Japonia)</td>
</tr>
<tr>
<td>32</td>
<td>Stewartia sinensis Rehd. et Wils. (11990)</td>
<td>1989</td>
<td>Lushan (Chiny)</td>
</tr>
<tr>
<td>33</td>
<td>Symlocos paniculata Miq. (10669)</td>
<td>1993</td>
<td>Dortmund (Niemcy)</td>
</tr>
</tbody>
</table>
Fig. 1. Phenological spectrum

<table>
<thead>
<tr>
<th>Image</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faza listnienia</td>
</tr>
<tr>
<td></td>
<td>Faza jesiennego przebarwienia</td>
</tr>
<tr>
<td></td>
<td>Faza zamierania i opadania liści</td>
</tr>
<tr>
<td></td>
<td>Faza pąków kwiatowych</td>
</tr>
<tr>
<td></td>
<td>Faza kwitnienia</td>
</tr>
<tr>
<td></td>
<td>Faza owoców niedojrzałych</td>
</tr>
<tr>
<td></td>
<td>Faza owoców dojrzałych</td>
</tr>
<tr>
<td></td>
<td>Faza rosziewania</td>
</tr>
</tbody>
</table>

Legend to wykresów:
Legend:
<table>
<thead>
<tr>
<th>Kwiaty</th>
<th>Owoce</th>
<th>Liście</th>
<th>Pędy</th>
<th>Gatunek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abelia moseriana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natari</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: Tabela przedstawia zasiedlenie różnorodności biodorywczej drzew i krzewów.

Tabela 2: Porównanie wielkości i specyficznych cech kwiatów, owoców, liści i pędów w różnych gatunkach.