XXXI Zjazd
Polskich Ogrodów Botanicznych
Lublin 24–27 maja 2000

„Rola ogrodów botanicznych
w zachowaniu bioróżnorodności roślin”

POD PATRONATEM:
• Rady Ogrodów Botanicznych w Polsce
• Komisji Ogrodów Botanicznych i Arboretów
 Komitetu Botaniki Polskiej Akademii Nauk

ORGANIZATORZY ZJAZDU:

Ogród Botaniczny Uniwersytetu im. Marii Curie-Skłodowskiej w Lublinie

Ogród Botaniczny – Centrum Zachowania Różnorodności Biologicznej
Polskiej Akademii Nauk w Warszawie

KOMITET ORGANIZACYJNY ZJAZDU:

Przewodniczący Doc. dr hab. Jerzy Puchalski

Wic.przewodniczący Dr inż. Maciej Kwiatkowski

Członkowie: Mgr inż. Ryszard Sawicki
 Mgr inż. Wiesław Gawryś

MIEJSCE ZJAZDU: Uniwersytet im. Marii Curie-Skłodowskiej
 Akademickie Centrum Kultury „Chatka Żaka”
 Lublin, ul. Radziżewskiego 16
Uczestnicy XXXI Zjazdu Polskich Ogrodów Botanicznych w trakcie zwiedzania kolekcji kosaćców Ogrodu Botanicznego UMCS w Lublinie. 24 maja 2000 r.
WKLAD OGRODU BOTANICZNEGO
UNIWERSYTETU IM. M. CURIE-SKŁODOWSKIEJ
W LUBLINIE W POZNANIE RZMIESZCZENIA, EKOLOGII,
ZAGROŻENIA ORAZ OCHRONĘ ROŚLIN NACZYNIOWYCH
NA LUBELSZCZYŹNIE

The contribution of Botanical Garden of Maria Curie-Sklodowska
University in Lublin to explore the distribution, ecology and protection
of plants in the Lublin region

Dominik FIJALKOWSKI 1, Maciej KWIATKOWSKI 2

1 Emerytowany Profesor UMCS, 20-854 Lublin, ul. Paganiniego 9 m. 244
2 Ogród Botaniczny UMCS, 20-810 Lublin, ul. Sławinska 3

WSTĘP

STAN ZBADANIA FLORY OD 1945 DO 2000 R.

GRUPY EKOLOGICZNE

Dobry stan zbadania flora roślin naczyniowych Lubelszczyzny pozwala na wydzielenie wśród roślin rzadkich kilkunastu grup gatunków o wąskiej amplitudzie ekologicznej. Można je traktować jako rośliny wskaźnikowe określonych ekosystemów. Znajomość takich grup i stopnia przywiązania do nich określonych gatunków pozwala na opracowanie działań mających na celu ochronę gatunków zamierających, uprawę połową roślin leczniczych, nektarodajnych i ozdobnych. We florze Lubelszczyzny wydzielono 13 takich grup ekologicznych.

1. Rośliny wodne siedlisk eutroficznych silnie zanieczyszczonych odpadami komunalnymi: *Potamogeton lucens* i *Potamogeton pectinatus*.

 Pierwszy gatunek jest wskaźnikiem bardzo żywnych wód stojących stawowych II i III klasy czystości. Drugi gatunek z kolei wskazuje na wody ruchome (rzeki, potoki) silnie zanieczyszczone odpadami komunalnymi o III klasy czystości.

2. Wody oligotroficzne są związane przede wszystkim z: *Isoetes lacustris*, *Myriophyllum alterniflorum*, *Potamogeton perfoliatus* i *Elatine hydropiper*.

5. Torfowiska niskie i węglanowe są dominującym ekosystemem siedlisk alkalicznych związanych z utworami kredowymi bogatymi w wapń – gromadzą w sobie wiele osobliwości florystycznych. Występują tu przede wszystkim następujące gatunki rzadkie: *Tofieldia calyculata*, *Trollius europaeus*, *Schoenus ferrugineus*, *Sweettia perennis*, *Cladium mariscus*, *Silene tatarica*, *Carex buxbaumii*, *Liparis loeselii*, *Betula humilis*.

Koeleria grandis Gypsophila fastigiata
Koeleria glauca Jovibarba sobolifera
Elymus arenarius

8. Żyzne lasy o charakterze górskim oraz niżowych. Występujące tu gatunki charakteryzuje siedlika bardzo żynne, o powierzchni silnie urzębiionej i równomiernie uwilgotnionej. Zaliczyć tu można głównie:
* Aposeris foetida Atrapa belladonna
* Allium victorialis Pulmonaria mollissima
* Allium ursinum Huperzia selago

9. Laszy borowe z klasy Vaccinio-Piceetea skupiają głównie następujące gatunki rzadkie:
* Dipsasium complanatum Goodyera repens

10. Rośliny ruderalne siedlisk alkalicznych:
* Bunias orientalis Diplotaxis muralis
* Reseda lutea Salvia verticillata
* Reseda phyteuma Coronopus procumbens

11. Rośliny ruderalne siedlisk kwaśnych i piaszczystych:
* Plantago arenaria Corispermum
* * hyssopifolium

12. Rośliny segetalne siedlisk alkalicznych:
* Ranunculus arvensis Adonis flammea
* Scandix pecten-veneris Adonis aestivales
* Anagallis foemina Bupleurum
* rotundifolium
* Caucalis danuvides Euphorbia exigua
* Stachys annua Euphorbia layphyllos
* Aethusa cynapium Euphorbia falcata

13. Rośliny segetalne siedlisk piaszczystych:
* Anthoxanthum Polycnemum
* aristatum arvense
* Arnoseris minima Hypochorhis glabra
* Herniaria hirsuta Ornithopus perpusillus
* Teesdalea nudicaulis

ZAGROŻENIA FLORY

Flory poszczególnych regionów wykształciły się pod wpływem wielu czynników naturalnych oraz antropogenicznych. Są one z sobą silnie powiązane wieloma czynnikami: zanieczyszczeniem powietrza i wód, prowadzeniem melioracji, zrównym systemem pozyskiwania w lasach drewna, ziół, zalesianiem pastwisk i ugorów, użytkowaniem turystycznym i rekreatywnym oraz działalnością naukową i dydaktyczną.

Zagrożenia melioracyjne. Melioracje wiążą się na Lubelszczyźnie niemal całkowicie z osuszaniem. W okresie powojennym osuszono i obsiano trawę ponad 7000 ha torfowisk wę
ghanowych projektowanych wcześniej do ochrony. Od kilkunastu lat te sztuczne łęki przekształciły się w 80% w nieuchytki z dominacją ostróżenia polnego, trzcinka piaskowego i pokrzywy. Kilka set hektarów zostało wypalonych do głębokości 1 m. Na siedliskach podtopionych i kwaśnych melioracje obniżyły poziom wód gruntowych średnio o 1 m. Osuszanie i postępująca eutrofizacja spowodowała przekształcenie się torfowisk przejściowych w eutroficne łęki lub zbiorowiska z dominacją wspomnianych chwastów. Budowa kanału Wieprz-Krznz jeszcze bardziej skomplikowała stosunki wodne na Pojezierzu Łęczyńsko-Włodawskim i doprowadziła do całkowitej degradacji naturalnych ekosystemów. Nie mniejsze szkody wyrządziło osuszanie lasów. W północnej części Łubszyczniny w lasach chotylowskich opadły o 2 miesiące wcześniejsze liście drzew lęgowych. W okolicy Żłóbka pod Włodawą zarośla osłowe przekształciły się po osuszeniu łak w wysokopienne lasy olszowo-brzożowe. Wielokierunkowe degradacje naturalnych lasów janowskich nastąpiły na skutek tylko częściowo przeprowadzonego osuszania bagien. Melioracje przy Poleskim Parku Narodowym spowodowały zniszczenie ponad 90% rzadkich zasobów roślinnych.

Eksploatacja drewna zrębnym zupełnym na niżu jest w zasadzie jedyną metodą pozyskiwania drzew na niżu, a również i na całej Łubszyczninie. Prowadzi się ją nawet w parkach krajobrazowych i lasach promocjonych (Lasy Janowskie). Zregu orze się i sadzi nowe drzewa lub przygotowuje odsłoniętą glebę w najlepszym przypadku do naturalnego obsiewu drzew. GINą tą drogą całe ekosystemy leśne. Pozostaje kultura leśna nie mająca nie współnego z utrzymaniem bioróżnorodności.

Czarne Sosnowickie. Nie wiadomo czy nie za- deutano Isocëtes lacustris w jeziorze Białskim. Turystyka piesza prowadzona jest zwykle ciągami pieszymi, stąd szkody z tej strony są min- nimalne.

Rezerwaty i pomniki przyrody są bardzo często przyczyną zamierania tych gatunków, które były podstawą utworzenia obiektów ochronnych. Pomniki przyrody w Niemcach k. Lublina i Horodyszczu powołane dla ochrony zimoziołu półnozowego zarosły dwuzwiemi, a chroniona roślina zamarła. Rezerwaty: Stawiska Góra, Rogów, Wolwinów uratowano dzięki wycięciu w porę zarośli. Duży rezerwat tego typu Labunie przekształcił się w dąbrowę świe- tlistą i zwarte zarośla kserotermiczne z klasy Rhamnetae i Trijfolio-Geranietae sanguinei. W rezerwatach ochrony dębu beższypułkowego można z biegiem lat nie znaleźć tego gatunku w drzewostan gdzie w ramach trzebieży zdołał wycięci niemal zupełnie jako słabiej rosną- cy niż dąb szypułkowy (np. rezerwat Bachus, Kozie Górk).

OCHRONA RÓŻNORODNOŚCI FLORYSTYCZNEJ

The first (1945–1965) were supervised by J. Motyka and realised by D. Fijalkowski. The plants gathered at that time were stored in the herbarium, and living plants were planted in the Botanical Garden on the premises of the campus. Intensive outdoor research were also carried out. Owing to that, it was possible to came up with approximately 100 applications to create monuments of nature, nearly 50 applications to set up nature reserves. Furthermore, projects to establish the Roztocze and Polesie National Park as well as a web of objects for protection were created.

The second period (1966–1970) was characterised by moving parts of the collection of the Garden in the campus to the area gained in 1958 situated in Sławnik, Lublin. Moreover the Botanical Garden was acknowledged as a separate scientific department run by Prof. D. Fijalkowski. Research on the cultivation of healing and very rare plants was started. In general, about 120 papers were published at that time.

In the third period, from 1971, new directors of the Gardens were Dr K. Kozak, and in recent years dr M. Kwiatkowski. The research on the investigation and protection of plants has been taken over by the scientist from the Department of Biology and Soil Science (BiNoZ). Recently, the scientist from the Botanical Garden have carried out research on eleven species in the areas of ecology, introduction and restitution of rare plants. Furthermore, attempts have been made to re-naturalise ecological relationships on the degraded areas of the Lublin region. A satisfying state of the exploration of flora has allowed to isolate several ecological groups, to estimate the danger considering regression factors, and to protect floristic variety. In this period 29 articles have been published.
LITERATURA

Fijalkowski D., 1988. Zmiany szaty roślinnej na Lubelszczyźnie w ostatnim dwudziestoleciu

PETROWICZ M., 1973. Badania nad zmiennością, eko-
logią i rozmnazaniem Chamaemytisus albus Roth. Annales UMCS, sec. C, XXVIII (22): 245-
264.

PETROWICZ M., 1977a. Rozmieszczenie szczodrzeń-
ców na Lubelszczyźnie. Rocznik Dendrologicz-
ny, XXX: 55-65.

TESKE E., 1992. Problemy związane z ochroną ga-
tunków roślin rzadkich i zagrożonych, prowa-

TESKE E., 1994. Ogrody i powierzchnie chronione w wolnej przyrodzie szansą na przetrwanie ga-
tunków rzadkich i zagrożonych. Chrońmy Przy-
rodę Ojcz. R.L. (3): 26-33

wioralna. Mat. Sympozjum, Lublin, 25-26 listo-
